
Wrapper Objects for Solving

a Linear System of Equations

using SPOOLES 2.2

Cleve Ashcraft
Boeing Shared Services Group1

Peter Schartz
CSAR Corporation2

January 2, 1999

1P. O. Box 24346, Mail Stop 7L-21, Seattle, Washington 98124. This research was supported in part by the
DARPA Contract DABT63-95-C-0122 and the DoD High Performance Computing Modernization Program Common
HPC Software Support Initiative.

228035 Dorothy Drive, Agoura Hills, CA 91301. This research was supported in part by the DARPA Contract
DABT63-95-C-0122 and the DoD High Performance Computing Modernization Program Common HPC Software
Support Initiative.

Abstract

The SPOOLES library stands for SParse Object Oriented Linear Equation Solver. It is written in the C
language using object oriented design and can solve real or complex linear systems in serial, multithreaded
and MPI environments. It contains three options to order the matrices: minimum degree, generalized nested
dissection and multisection. The matrices may be symmetric, Hermitian or nonsymmetric. Pivoting for
numerical stability is supported.

While the functionality of the library is broad, the learning curve can be steep for the initial user. We
present in this paper some “wrapper” objects in the serial, multithreaded and MPI environments that ease
the transition. They were originally written to integrate the SPOOLES library into CSAR’s CSAR-Nastran
library.

The wrapper objects are presented as a learning device; anything that reduces the interface between the
user and the library also restricts the ability to tune the library to a particular need. This drawback is
ameliorated by a number of wrapper methods that allow the user to change default parameters that govern
the ordering, factorization and solve.

Contents

1 Introduction 3

2 Setting up the linear system 5
2.1 Constructing an InpMtx object . 5
2.2 Constructing an DenseMtx object . 8
2.3 IO for the InpMtx and DenseMtx objects . 9

3 The Serial Wrapper Object and Driver 11
3.1 A quick look at serial driver program . 11
3.2 The Bridge Data Structure . 13
3.3 Prototypes and descriptions of Bridge methods . 15

3.3.1 Basic methods . 15
3.3.2 Instance methods . 15
3.3.3 Parameter methods . 16
3.3.4 Setup methods . 17
3.3.5 Factor method . 17
3.3.6 Solve method . 17

4 The Multithreaded Wrapper Object and Driver 18
4.1 A quick look at the multithreaded driver program . 19
4.2 The BridgeMT Data Structure . 21
4.3 Prototypes and descriptions of BridgeMT methods . 22

4.3.1 Basic methods . 22
4.3.2 Instance methods . 23
4.3.3 Parameter methods . 24
4.3.4 Setup methods . 25
4.3.5 Factor methods . 25
4.3.6 Solve methods . 26

5 The MPI Wrapper Object and Driver 27
5.1 A quick look at the MPI driver program . 28
5.2 The BridgeMPI Data Structure . 30
5.3 Prototypes and descriptions of BridgeMPI methods . 32

1

SPOOLES 2.2 Wrapper Objects : January 2, 1999 2

5.3.1 Basic methods . 32
5.3.2 Instance methods . 33
5.3.3 Parameter methods . 34
5.3.4 Setup methods . 35
5.3.5 Factor methods . 35
5.3.6 Solve methods . 36

A testWrapper.c — A Serial Driver Program 37

B testWrapperMT.c — A Multithreaded Driver Program 43

C testWrapperMPI.c — A MPI Driver Program 50

Chapter 1

Introduction

One common task for the SPOOLES library is to solve a linear system of equations AX = Y . The matrix
A is large and sparse, and the right hand side Y and solution X will have one or more columns. The matrices
may be real or complex. We will consider the case where A is square, and could be symmetric, Hermitian,
or nonsymmetric.

The first step is the find a permutation matrix P such that Â = PAPT has a low-fill factorization,
i.e., after Â has been factored into (UT + I)D(I + U) (if Â is symmetric), (UH + I)D(I + U) (if Â is
Hermitian), or (L + I)D(I + U) (if Â is nonsymmetric), the factor matrices L and U have relatively few
entries. The SPOOLES library can compute three types of low-fill orderings: minimum degree, generalized
nested dissection, and multisection.

The second step is to permute A into Â and compute the factorization. The SPOOLES library has a
great deal of flexiblity in this step. The choreography, (what data structures exist, what block computations
take place), can be specified and tuned by the knowledgeable user. Pivoting for numerical stability is
supported, i.e., the user can specify an upper bound on the magnitudes of the entries in L and U . The
factorization can be exact (up to roundoff) or approximate, where entries that are small in magnitude are
dropped, neither stored nor used in computations.

The last step is to solve ÂX̂ = Ŷ , where Ŷ = PY , and X = PX̂. The matrix Y needs to be permuted
to form Ŷ , and X is obtained from X̂ by a permutation.

Needless to say, the complex process outlined above can be intimidating to the first time user. The
complete step-by-step process for serial, multithreaded and MPI environments is described at length in the
SPOOLES User’s Manual. The purpose of this document is to present a vastly simplified approach for
the first-time user. We describe three wrapper objects that we wrote for the integration of the SPOOLES
library into CSAR-Nastran. Bewarned, while the wrapper objects insulate the user from many of the details,
they also restrict the ability of the user to tune the code to the particular linear system. We hope that these
wrapper methods will provide a gentle introduction to the library, and be a good example from which the
user can tune as necessary.

The user’s application program must interface with the SPOOLES library in some manner. The serial,
multithreaded and MPI wrapper objects we describe in sections 3, 4 and 5. But first the user must
communicate the matrix A and right hand side Y to the library, and receive back the solution X . To do this
the user must generate two SPOOLES objects — a InpMtx object for A and DenseMtx objects for Y and
X . This process is described in section 2.

Serial code has one process and one address space. Multithreaded code can have multiple threads sharing
one address space. The SPOOLES library utilizes multiple threads only in the factorization and solve steps.
All other operations act on the global data structures using serial methods. In the MPI environment, the
data structures for A, X and Y may be distributed, and all working data structures that contain the factor

3

SPOOLES 2.2 Wrapper Objects : January 2, 1999 4

matrices and their supporting information are distributed. The MPI code is much more complex than the
serial or multithreaded codes, for not only are the factor and solves parallel and distributed (as is the symbolic
factorization), but there is a great deal of support code necessary because of the distributed data structures.

The wrapper methods described in this paper do not exercise all the functionality of the MPI environment.
This is due to the present state of the CSAR-Nastran code from CSAR, where the matrix A and right hand
side Y are generated on one processor. We chose to do all the serial preprocessing

• generate a graph of the matrix,

• order the graph,

• compute the symbolic factorization,

• and construct the permutations

on processor 0 that reads in A and Y from the CSAR-Nastran files. Since the bulk of the overall time for a
CSAR-Nastran run is dominated by the factor and solves, this approach was considered acceptable. For the
user who is interested in using the MPI environment for the entire process, e.g., when A and Y cannot fit
on one processor, see the SPOOLES User Manual for driver programs.

Chapter 2

Setting up the linear system

Our typical user is interested in solving AX = Y , where A is square, large and sparse, and X and Y are dense
matrices with one or more columns. SPOOLES is a very large sophisticated library with a commensurate
learning curve to master its functionality. But what is the bare minimum a user has to know to obtain a
solution to their linear system?

• They need to construct an InpMtx object that holds the entries of A. (InpMtx stands for Input matrix,
for it is an easy to use object that one uses to input, assemble, sort and manipulate entries in a sparse
matrix.)

• They need to construct a DenseMtx object that holds the entries of Y .

• They need to construct a DenseMtx object to hold the entries of X .

These two objects encapsulate the minimal interface to the SPOOLES library. the application program
needs to know how to construct the InpMtx and DenseMtx objects, either directly inside an application
program, or by reading in a custom matrix file. This is what we now describe.

2.1 Constructing an InpMtx object

The InpMtx object is more of an “Input” object than a “Matrix” object. It descended from an out-of-core
assembly code that assembled and sorted entries of a sparse matrix. Simplicity and functionality are its
goals, at some expense of efficiency in storage and computation. Note: all indices are zero-based as in C,
not 1-based as in FORTRAN.

The InpMtx object is simplest understood as a “bag” of triples 〈r(i, j), c(i, j), ai,j〉, where r() and c() are
some functions that define the first and second coordinates. Each InpMtx object has a “coordinate type”,
one of

• INPMTX BY ROWS, where r(i, j) = i, c(i, j) = j.

• INPMTX BY COLUMNS, where r(i, j) = j, c(i, j) = i.

• INPMTX BY CHEVRONS, where r(i, j) = min(i, j), c(i, j) = j − i.

Rows and columns are self-explanatory, the first coordinate r(i, j) is either the row or column of ai,j . The
j-th “chevron” is composed of the diagonal entry aj,j , entries in the j-th row of the upper triangle, and
entries in the j-th column of the lower triangle. It is the natural data structure for the assembly of the
matrix entries into the “fronts” used to factor the matrix.

5

SPOOLES 2.2 Wrapper Objects : January 2, 1999 6

The InpMtx object can hold one of three types of entries as “indices only” (no entries are present), real
entries, or complex entries. The type is specified by the inputMode parameter to the InpMtx init() method.

• INPMTX INDICES ONLY where the triples langler(i, j), c(i, j),−〉 are really only pairs, i.e., no numerical
values are present. This mode is useful for assembling graphs.

• SPOOLES REAL where ai,j is a real number, a double value.

• SPOOLES COMPLEX where ai,j is a complex number, really two consecutive double values.

“Coodinate type” and “input mode” (equivalently, the type of entries) are the two parameters that must be
specified when initializing an InpMtx object.

InpMtx *mtxA = InpMtx_new() ;
InpMtx_init(mtxA, coordType, inputMode, 0, 0) ;

Every object in the SPOOLES library is initialized via an ObjectName new() method, which allocates space
for the object and sets its fields to default values. If you wish to use an automatic variable, then one must
explicitly set the default fields, as follows.

InpMtx mtxA ;
InpMtx_setDefaultFields(&mtxA) ;
InpMtx_init(&mtxA, coordType, inputMode, 0, 0) ;

Only the coordinate type and input mode are necessary. The fourth and fifth arguments are upper bounds
on the number of entries and vectors for the object. (More on vectors in just a moment.) The user does
not need to know values for the number of entries or vectors, for the object resizes itself as necessary as
information is placed into it.

“Vectors” is one way that the entries can be stored. There are actually three ways, specified by the
storageMode field of the InpMtx object.

• INPMTX RAW DATA, where the pairs or triples are stored in unordered form.

• INPMTX SORTED, where the pairs or triples are stored in ascending lexicographic order of the first two
coordinates.

• INPMTX BY VECTORS, where the pairs or triples are sorted and stored in vectors defined by their first
coordinate.

The storage mode can be changed via a call to InpMtx changeStorageMode().
The user does not really need to know about this “storage mode”. Fill the InpMtx object with data

in any way at all (we will describe this shortly). The wrapper method will check that the data is in the
form it needs. If is isn’t, the object will be transformed as necessary. The “sort” operation is really “sort-
and-compress”, the pairs or triples are sorted into ascending order, and then the list is scanned duplicates
are “merged” together, i.e., if real or complex entries are present, they are added together. (This allows us
to assemble finite element matrices.) The knowledgeable user can change the storage mode as necessary,
and thus avoiding expensive sorts when possible. For example, after reading in the matrix data from the
CSAR-Nastran file, the entries are already in sorted form, and the explicit sort can be avoided.

Now let us see how we “input” information into the InpMtx object. There are several input methods,
e.g., single entries, rows, columns, and submatrices, and each input method has three types of input, e.g,
indices only, real entries, or complex entries. Here are the prototypes below.

• Input methods for “indices only” mode.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 7

void InpMtx_inputEntry (InpMtx *mtxA, int row, int col) ;
void InpMtx_inputRow (InpMtx *mtxA, int row, int rowsize, int rowind[]) ;
void InpMtx_inputColumn (InpMtx *mtxA, int col, int colsize, int colind[]) ;
void InpMtx_inputMatrix (InpMtx *mtxA, int nrow, int ncol, int rowstride,

int colstride, int rowind[], colind[]) ;

• Input methods for real entries.

void InpMtx_inputRealEntry (InpMtx *mtxA, int row, int col, double value) ;
void InpMtx_inputRealRow (InpMtx *mtxA, int row, int rowsize,

int rowind[], double rowent[]) ;
void InpMtx_inputRealColumn (InpMtx *mtxA, int col, int colsize,

int colind[], double colent[]) ;
void InpMtx_inputRealMatrix (InpMtx *mtxA, int nrow, int ncol, int rowstride,

int colstride, int rowind[], colind[], double mtxent[]) ;

• Input methods for complex entries.

void InpMtx_inputComplexEntry (InpMtx *mtxA, int row, int col,
double real, double imag) ;

void InpMtx_inputComplexRow (InpMtx *mtxA, int row, int rowsize,
int rowind[], double rowent[]) ;

void InpMtx_inputComplexColumn (InpMtx *mtxA, int col, int colsize,
int colind[], double colent[]) ;

void InpMtx_inputComplexMatrix (InpMtx *mtxA, int nrow, int ncol, int rowstride,
int colstride, int rowind[], colind[], double mtxent[]) ;

The rowind[] row indices and colind[] column indices are precisely that. Don’t worry about what coordi-
nate type the InpMtx object has, the translation from row and column indices into the particular coordinate
is done inside the input methods.

Let us look at a particular example, where we have a n1×n2 grid and we want to have a

⎡
⎣ −1

−1 4 −1
−1

⎤
⎦

5-point operator at each grid point. Note, this matrix is symmetric, so we need input only the upper triangle
(or the lower triangle) of the matrix.

mtxA = InpMtx_new() ;
InpMtx_init(mtxA, INPMTX_BY_ROWS, SPOOLES_REAL, 0, 0) ;
for (ii = 0 ; ii < n1 ; ii++) {

for (jj = 0 ; jj < n2 ; jj++) {
ij = ii + jj*n1 ;
indices[0] = ij ;
entries[0] = 4.0 ;
count = 1 ;
if (ii < n1) {

indices[count] = ij + 1 ;
entries[count] = -1.0 ;
count++ ;

}
if (jj < n2) {

indices[count] = ij + n1 ;

SPOOLES 2.2 Wrapper Objects : January 2, 1999 8

entries[count] = -1.0 ;
count++ ;

}
InpMtx_inputRealRow(mtxA, ij, count, indices, entries) ;

}
}
InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ;

The process begins by allocating an InpMtx object mtxA using the InpMtx new() method, initializing it with
the InpMtx init() method, and filling it with matrix entries with the InpMtx inputRealRow() method.
The last method, InpMtx changeStorageMode(), “assembles” the data (not really necessary because the
entries are disjoint, “sorts” the data (again not necessary since the entries were input in ascending order,
and creates a vector structure inside the InpMtx object that allows easy access to each individual row.

We could have input all the entries and treated it as a nonsymmetric matrix, but that would not be
efficient with respect to storage or factorization cost. Alternatively, we could have input all the entries and
called the InpMtx dropLowerTriangle() method to drop the lower triangular entries.

2.2 Constructing an DenseMtx object

The DenseMtx stores a real or complex dense matrix. It is not just an array of numbers, it also has row
indices and column indices. This allows it to exist in a distributed MPI environment where each processors
has only a submatrix of the matrix. Here is how to initialize a DenseMtx object.

int type, rowid, colid, nrow, ncol, inc1, inc2 ;
DenseMtx *mtx = DenseMtx_new() ;
DenseMtx_init(mtx, type, rowid, colid, nrow, ncol, inc1, inc2) ;

• The type is either SPOOLES REAL or SPOOLES COMPLEX.

• The rowid and colid values are used to identify a DenseMtx as a submatrix of a larger matrix. Any
values are suitable.

• nrow and ncol are the number of rows and columns in the matrix, respectively.

• The entries of the matrix can be stored in either row major or column major form. For row major, use
inc1 = ncol and inc2 = 1. For column major, use inc1 = 1 and inc2 = nrow. Note, all solve and
matrix-matrix multiply methods require that the DenseMtx object be column major.

For example, here is the call to initialize a DenseMtx object to have real entries, 100 rows and 5 columns,
entries column major.

DenseMtx_init(mtx, SPOOLES_REAL, 0, 0, 100, 5, 1, 100) ;

During the initialization, the row indices are set to 0, 1, . . . , nrow− 1 and the column indices are set to
0, 1, . . . , ncol− 1. The entries are not initialized. Zero the entries with a call to DenseMtx zero(). (This is
crucial when loading a sparse right hand side into the DenseMtx object.)

Once we have the DenseMtx object initialized, we want to be able to access the row indices, the column
indices and the entries. We do this through instance methods.

void DenseMtx_rowIndices (DenseMtx *mtx, int *pnrow, int *prowind) ;
void DenseMtx_columnIndices (DenseMtx *mtx, int *pncol, int *pcolind) ;
double * DenseMtx_entries (DenseMtx *mtx) ;

SPOOLES 2.2 Wrapper Objects : January 2, 1999 9

We would use them as follows.

double *entries ;
int ncol, nrow, *colind, *rowind ;

DenseMtx_rowIndices(mtx, &nrow, &rowind) ;
DenseMtx_columnIndices(mtx, &ncol, &colind) ;
entries = DenseMtx_entries(mtx) ;

We can now fill the indices or the entries. The location of the (irow,jcol) entry is found at offset =
irow*inc1 + jcol*inc2. The row and column increments can be found as follows.

int inc1 = DenseMtx_rowIncrement(mtx) ;
int inc2 = DenseMtx_columnIncrement(mtx) ;

To avoid dealing with row and column increments, we can retrieve and set values of a particular entry.

double value, real, imag ;
int irow, jcol ;

DenseMtx_realEntry(mtx, irow, jcol, &value) ;
DenseMtx_complexEntry(mtx, irow, jcol, &real, &imag) ;
DenseMtx_setRealEntry(mtx, irow, jcol, value + 10.) ;
DenseMtx_setComplexEntry(mtx, irow, jcol, real + 1., imag + 2.) ;

As a real example, consider the n1 × n2 grid from the previous subsection, where we assembled a finite
difference matrix. Assume that the right hand side is zero except for points where (n1-1,0:n2-1), where a
unit load is applied. Here is the code to generate the DenseMtx object.

mtxY = DenseMtx_new();
DenseMtx_init(mtxY, SPOOLES_REAL, 0, 0, n1*n2, 1, 1, n1*n2) ;
DenseMtx_zero(mtxY) ;
ii = n1 - 1 ;
for (jj = 0 ; jj < n2 ; jj++) {

ij = ii + jj*n1 ;
DenseMtx_setRealEntry(mtxY, ij, 1, 1.0) ;

}

Do not forget to zero the entries in mtxY before setting any entries.

2.3 IO for the InpMtx and DenseMtx objects

The three driver programs that we describe in the next sections read A and Y from files and write X to a
file. So the first thing we know is that the InpMtx and DenseMtx objects can read and write themselves from
and to files. This convention is supported by most of the objects in the SPOOLES library. In fact, there
is a common protocol that is followed. Let us take a look at the common IO methods for the InpMtx.

• int InpMtx readFromFile (InpMtx *obj, char *filename) ;

• int InpMtx readFromFormattedFile (InpMtx *obj, FILE *fp) ;

• int InpMtx readFromBinaryFile (InpMtx *obj, FILE *fp) ;

SPOOLES 2.2 Wrapper Objects : January 2, 1999 10

• int InpMtx writeToFile (InpMtx *obj, char *filename) ;

• int InpMtx writeToFormattedFile (InpMtx *obj, FILE *fp) ;

• int InpMtx writeToBinaryFile (InpMtx *obj, FILE *fp) ;

• int InpMtx writeForHumanEye (InpMtx *obj, FILE *fp) ;

There are corresponding methods for the DenseMtx object, just replace “Inp” by “Dense” in the above
prototypes.

Two methods take as input char * file names. Each object can be archived in its own file with a
particular suffix. For example, InpMtx objects can be read from and written to files of the form *.inpmtxf
for a formatted file and *.inpmtxb for a binary file. For a DenseMtx object, the file names are *.densemtxf
and *.densemtxb. The InpMtx readFromFile() method looks at the filename argument, and calls the
binary or formatted read methods, depending on the suffix of filename. A normal return code is 1. If the
suffix does not match either *.inpmtxf or *.inpmtxb, an error message is printed and the return code is
0. Something similar works for writing an InpMtx object to a file using InpMtx writeToFile(), except if
filename’s suffix does not match, the InpMtx writeForHumanEye() method is called.

Here are three approaches to link A and Y from an application code to the InpMtx and DenseMtx objects
demanded by the SPOOLES application.

• An application could take the simple approach of creating an InpMtx and DenseMtx object to hold A
and Y , write them to a file, and then call a totally separate code that functions much like our drivers,
reading in A and Y , computing X and writing X to a file, which is then read in by the application
code.

• A second approach, one that was taken during the first integration of the SPOOLES library into
CSAR-Nastran, was to have the CSAR-Nastran code generate two files for A and Y in CSAR-Nastran
format. (This way CSAR-Nastran did not need to know any of the SPOOLES interface.) Two custom
routines were written to read in the entries of A and Y from the CSAR-Nastran files and construct
InpMtx and DenseMtx objects. The wrapper routines we describe in the next three chapters were called
to solve for X which was then written to a CSAR-Nastran file.

• A third approach would be to generate the InpMtx and DenseMtx objects in the application program,
and then call the wrapper methods to solve for X , i.e., no IO would be necessary.

Chapter 3

The Serial Wrapper Object and
Driver

The goal is to solve AX = Y in a serial environment. Section 1 of the User’s Manual presents a listing of
the AllInOne.c driver program for solving AX = Y . There are nine steps, and each requires “mid-level”
knowledge of several objects of the SPOOLES library. To reduce the complexity of using the library,
(and the complexity rises dramatically in the multithreaded and MPI environments), we created the Bridge
object. The term “bridge” symbolizes spanning the distance between the SPOOLES library and the CSAR-
Nastran application code. The nine steps of the allInOne.c driver program is reduced to three using the
Bridge object.

• Initialization and setup step.

Here the Bridge object is allocated via a call to Bridge new(). Parameters are set using Bridge set*()
methods. The setup phase orders the matrix and prepares all the necessary SPOOLES data structures
for the factorization and solve that follows.

• Factorization step.

The matrix is factored via a call to Bridge factor().

• Solution step.

The linear system is solved via a call to Bridge solve().

The Bridge object has many parameters that control the ordering of the matrix, the pivoting tolerance
(if pivoting is requested), the drop tolerance (for an approximate factorization), and so on. Rather than
burden the user with the knowledge of and setting these parameters, there are decent default values built
into the object. There are also methods to set various parameters to allow the user some control over the
ordering, factor and solve processes.

Section 3.1 takes a quick look at the Bridge driver program (whose complete listing is found in Ap-
pendix A). Section 3.2 describes the internal data fields of the Bridge object. Section 3.3 contains the
prototypes and descriptions of all Bridge methods.

3.1 A quick look at serial driver program

The entire listing of this serial driver is found in Appendix A. We now extract parts of the code.

11

SPOOLES 2.2 Wrapper Objects : January 2, 1999 12

• Decode the input.

msglvl = atoi(argv[1]) ;
msgFileName = argv[6] ;
neqns = atoi(argv[3]) ;
type = atoi(argv[4]) ;
symmetryflag = atoi(argv[5]) ;
mtxFileName = argv[6] ;
rhsFileName = argv[7] ;
solFileName = argv[8] ;
seed = atoi(argv[9]) ;

Here is a description of the input parameters.

– msglvl is the message level.

– msgFile is the message file name

– neqns is the number of equations.

– type is the type of entries: 1 (SPOOLES REAL) or 2 (SPOOLES COMPLEX).

– symmetryflag is the type of matrix symmetry: 0 (SPOOLES SYMMETRIC), 1 (SPOOLES HERMITIAN)
or 2 (SPOOLES NONSYMMETRIC).

– mtxFile is the name of the file from which to read the InpMtx object for A. The file name must
have the form *.inpmtxb for a binary file or *.inpmtxf for a formatted file.

– rhsFile is the name of the file from which to read the DenseMtx object for the right hand side Y .
The file name must have the form *.densemtxb for a binary file or *.densemtxf for a formatted
file.

– solFile is the name of the file to write the DenseMtx object for the solution X . The file name
must have the form *.densemtxb for a binary file or *.densemtxf for a formatted file, "none"
for no output, or any other name for a human-readable listing.

– seed is a random number seed used in the ordering process.

• Read in the InpMtx object for A.

mtxA = InpMtx_new() ;
rc = InpMtx_readFromFile(mtxA, mtxFileName) ;

The rc parameter is the error return. In the driver it is tested for an error, but we omit this from the
present discussion.

• Read in the DenseMtx object for Y .

mtxY = DenseMtx_new() ;
rc = DenseMtx_readFromFile(mtxY, mtxFileName) ;
DenseMtx_dimensions(mtxY, &nrow, &nrhs) ;

The nrhs parameter contains the number of right hand sides, or equivalently, the number of columns
in Y .

• Create and setup the Bridge object.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 13

bridge = Bridge_new() ;
Bridge_setMatrixParams(bridge, neqns, type, symmetryflag) ;
Bridge_setMessageInfo(bridge, msglvl, msgFile) ;
rc = Bridge_setup(bridge, mtxA) ;

The Bridge object is allocated by Bridge new(), and various parameters are set. The actual ordering of
the matrix, symbolic factorization, and permutation creation are performed inside the Bridge setup()
method.

• Compute the matrix factorization.

permuteflag = 1 ;
rc = Bridge_factor(bridge, mtxA, permuteflag, &error) ;

When permuteflag is 1, it means that the matrix in mtxA has not yet been permuted into the new
ordering and so is done inside the method. The error flag is filled with an error code that tells how
far the factorization was able to proceed. If rc = 1, the factorization completed without any error.

• Solve the linear system.

mtxX = DenseMtx_new() ;
DenseMtx_init(mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxX) ;
rc = Bridge_solve(bridge, permuteflag, mtxX, mtxY) ;

The DenseMtx object mtxX is created and initialized to be the same type and size as mtxY. Its entries
are explicitly zeroed (this is not necessary but is a good idea in general). The solution is then solved.
Again, note the presence of permuteflag. When 1, mtxY needs to be permuted into the new ordering,
and mtxX is returned in the original ordering.

3.2 The Bridge Data Structure

The Bridge structure has the following fields.

• Graph parameters:

– int neqns : number of equations, i.e., number of vertices in the graph.

– int nedges : number of edges (includes (u, v), (v, u) and (u, u)).

– int Neqns : number of equations in the compressed graph.

– int Nedges : number of edges in the compressed graph.

• Ordering parameters:

– int maxdomainsize : maximum size of a subgraph to not split any further during the nested
dissection process.

– int maxnzeros : maximum number of zeros to allow in a front during the supernode amalgama-
tion process.

– int maxsize : maximum size of a front when the fronts are split.

– int seed : random number seed.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 14

– double compressCutoff : if the Neqns < compressCutoff ∗ neqns, then the compressed graph
is formed, ordered and used to create the symbolic factorization.

• Matrix parameters:

– int type : type of entries, SPOOLES REAL or SPOOLES COMPLEX, default value is SPOOLES REAL.
– int symmetryflag : type of symmetry for the matrix, SPOOLES SYMMETRIC, SPOOLES HERMITIAN

or SPOOLES NONSYMMETRIC, default value is SPOOLES SYMMETRIC.

• Factorization parameters:

– int sparsityflag : SPOOLES DENSE FRONTS for a direct factorization, or SPOOLES SPARSE FRONTS
for an approximate factorization, default value is SPOOLES DENSE FRONTS.

– int pivotingflag : SPOOLES PIVOTING for pivoting enabled, or SPOOLES NO PIVOTING for no
pivoting, default value is SPOOLES NO PIVOTING.

– double tau : used when pivoting is enabled, all entries in L and U have magnitude less than or
equal to tau, default value is 100.

– double droptol : used for an approximation, all entries in L and U that are kept have magnitude
greater than or equal to droptol. default value is 0.001.

– PatchAndGoInfo *patchinfo : pointer to an object that controls special factorizations for op-
timization matrices and singular matrices from structural analysis, default value is NULL which
means no special action is taken. See the Reference Manual for more information.

• Pointers to objects:

– ETree *frontETree : object that defines the factorizations, e.g., the number of fronts, the tree
they form, the number of internal and external rows for each front, and the map from vertices to
the front where it is contained.

– IVL *symbfacIVL : object that contains the symbolic factorization of the matrix.
– SubMtxManager *mtxmanager : object that manages the SubMtx objects that store the factor

entries and are used in the solves.
– FrontMtx *frontmtx : object that stores the L, D and U factor matrices.
– IV *oldToNewIV : object that stores old-to-new permutation vector.
– IV *newToOldIV : object that stores new-to-old permutation vector.

• Message information, statistics and cpu times:

– int msglvl : message level for output. When 0, no output, When 1, just statistics and cpu times.
When greater than 1, more and more output.

– FILE *msgFile : message file for output. When msglvl > 0, msgFile must not be NULL.
– int stats[6] : statistics for the factorization.

stats[0] : # of pivots
stats[1] : # of pivot tests
stats[2] : # of delayed rows and columns

stats[3] : # of entries in D
stats[4] : # of entries in L
stats[5] : # of entries in U

– double cpus[14] : cpus for the different functions.

cpus[0] : time to construct Graph
cpus[1] : time to compress Graph
cpus[2] : time to order Graph
cpus[3] : time for symbolic factorization
cpus[4] : total setup time
cpus[5] : time to permute matrix
cpus[6] : time to initialize front matrix

cpus[7] : time to factor matrix
cpus[8] : time to post-process matrix
cpus[9] : total factor time
cpus[10] : time to permute rhs
cpus[11] : time to solve
cpus[12] : time to permute solution
cpus[13] : total solve time

SPOOLES 2.2 Wrapper Objects : January 2, 1999 15

3.3 Prototypes and descriptions of Bridge methods

This section contains brief descriptions including prototypes of all methods that belong to the Bridge object.

3.3.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. Bridge * Bridge_new (void) ;

This method simply allocates storage for the Bridge structure and then sets the default fields by a call
to Bridge setDefaultFields().

2. int Bridge_setDefaultFields (Bridge *bridge) ;

The structure’s fields are set to default values:

• neqns = nedges = Neqns = Nedges = 0.

• maxdomainsize = maxnzeros = maxsize = seed = -1. compressCutoff = 0.

• type = SPOOLES REAL.

• symmetryflag = SPOOLES SYMMETRIC.

• sparsityflag = SPOOLES DENSE FRONTS.

• pivotingflag = SPOOLES NO PIVOTING.

• tau = 100., droptol = 0.001.

• patchinfo= frontETree= symbfacIVL= mtxmanager= frontmtx= oldToNewIV= newToOldIV
= NULL.

The stats[6] and cpus[14] vectors are filled with zeros.

Return value: 1 for a normal return, -1 if bridge is NULL.

3. int Bridge_clearData (Bridge *bridge) ;

This method clears the object and free’s any owned data. It then calls Bridge setDefaultFields().

Return value: 1 for a normal return, -1 if bridge is NULL.

4. int Bridge_free (Bridge *bridge) ;

This method releases any storage by a call to Bridge clearData() and then free the space for bridge.

Return value: 1 for a normal return, -1 if bridge is NULL.

3.3.2 Instance methods

1. int Bridge_oldToNewIV (Bridge *bridge, IV **pobj) ;

This method fills *pobj with its oldToNewIV pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

2. int Bridge_newToOldIV (Bridge *bridge, IV **pobj) ;

This method fills *pobj with its newToOldIV pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 16

3. int Bridge_frontETree (Bridge *bridge, ETree **pobj) ;

This method fills *pobj with its frontETree pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

4. int Bridge_symbfacIVL (Bridge *bridge, IVL **pobj) ;

This method fills *pobj with its symbfacIVL pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

5. int Bridge_mtxmanager (Bridge *bridge, SubMtxManager **pobj) ;

This method fills *pobj with its mtxmanager pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

6. int Bridge_frontmtx (Bridge *bridge, FrontMtx **pobj) ;

This method fills *pobj with its frontmtx pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

3.3.3 Parameter methods

1. int Bridge_setMatrixParams (Bridge *bridge, int neqns, int type, int symmetryflag) ;

This method sets the number of equations, type of entries, and symmetry type of the matrix.

Return value:

1 normal return
-1 bridge is NULL
-2 neqns ≤ 0

-3 type is invalid
-4 symmetryflag is invalid
-5 symmetry flag is Hermitian but type is real

2. int Bridge_setOrderingParams (Bridge *bridge, int maxdomainsize, int maxnzeros,
int maxsize, int seed, double compressCutoff) ;

This method sets parameters needed for the ordering.

Return value:

1 normal return
-1 bridge is NULL
-2 maxdomainsize ≤ 0

-3 maxsize ≤ 0
-4 compressCutoff > 1

3. int Bridge_setFactorParams (Bridge *bridge, int sparsityflag, int pivotingflag,
double tau, double droptol, PatchAndGoInfo *patchinfo) ;

This method sets parameters needed for the factorization.

Return value:

1 normal return
-1 bridge is NULL
-2 sparsityflag is invalid

-3 pivotingflag is invalid
-4 tau < 2.0
-5 droptol < 0.0

4. int Bridge_setMessagesInfo (Bridge *bridge, int msglvl, FILE *msgFile) ;

This method sets the message level and file.

Return value: 1 for a normal return, -1 if bridge is NULL, -2 if msglvl > 0 and msgFile is NULL.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 17

3.3.4 Setup methods

1. int Bridge_setup (Bridge *bridge, InpMtx *mtxA) ;

This method orders the graph, generates the front tree, computes the symbolic factorization, and
creates the two permutation vectors.

Return value: 1 for a normal return, -1 if bridge is NULL, -2 if mtxA is NULL.

2. int Bridge_factorStats (Bridge *bridge, int type, int symmetryflag, int *pnfront,
int *pnfactorind, int *pnfactorent, int *pnsolveops, double *pnfactorops) ;

This method takes as input the type and symmetry of the matrix, and fills the pointer fields with
the number of fronts, factor indices, factor entries, forward and back solve operations, and factor
operations.

Return value:

1 normal return
-1 bridge is NULL
-2 type is invalid
-3 symmetryflag is invalid
-4 type is real but symmetryflag is Hermitian
-5 front tree is not present

-6 pnfront is NULL
-7 pnfactorind is NULL
-8 pnfactorent is NULL
-9 pnsolveops is NULL

-10 pnfactorops is NULL

3.3.5 Factor method

1. int Bridge_factor (Bridge *bridge, InpMtx *mtxA, int permuteflag, int *perror) ;

This method permutes the matrix into the new ordering (if permuteflag is 1), factors the matrix, and
then post-processes the factors.

Return value:

1 normal return, factorization did complete
0 factorization did not complete

-1 bridge is NULL
-2 mtxA is NULL
-3 perror is NULL

3.3.6 Solve method

1. int Bridge_solve (Bridge *bridge, int permuteflag, DenseMtx *mtxX, DenseMtx *mtxY) ;

If permuteflag is 1, then mtxY is permuted into the new ordering. The linear system AX = Y is
solved. If permuteflag is 1, then mtxX is permuted into the old ordering.

Return value:

1 normal return
-1 bridge is NULL
-2 X is NULL
-3 Y is NULL

-4 frontmtx is NULL
-5 mtxmanager is NULL
-6 oldToNewIV needed, but not available
-7 newToOldIV needed, but not available

Chapter 4

The Multithreaded Wrapper Object
and Driver

The goal is to solve AX = Y in a multithreaded environment. Section 8 of the User’s Manual presents a
listing of the AllInOneMT.c driver program for solving AX = Y . There are ten steps, and each requires
“mid-level” knowledge of several objects of the SPOOLES library. To reduce the complexity of using the
library, (and the complexity rises dramatically in the MPI environments), we created the BridgeMT object.
The term “bridge” symbolizes spanning the distance between the SPOOLES library and the CSAR Nastran
application code. The ten steps of the allInOneMT.c driver program is reduced to five using the BridgeMT
object.

• Initialization and setup step.

Here the BridgeMT object is allocated via a call to BridgeMT new(). Parameters are set using
BridgeMT set*()methods. The setup phase orders the matrix and prepares all the necessary SPOOLES
data structures for the factorization and solve that follow

• Setup the numerical factorization.

In this step, BridgeMT factorSetup() is called to define the parallelism for the factorization, and all
data structures for the parallel execution are created.

• Factorization step.

The matrix is factored via a call to BridgeMT factor().

• Setup the numerical solves.

BridgeMT solveSetup() is called to set up the parallel solves. This must be called once after a
factorization, one or more solves may follow.

• Solution step.

The linear system is solved via a call to BridgeMT solve().

The BridgeMT object has many parameters that control the ordering of the matrix, the pivoting tolerance
(if pivoting is requested), the drop tolerance (for an approximate factorization), and so on. Rather than
burden the user with the knowledge of and setting these parameters, there are decent default values built
into the object.

Section 4.1 takes a quick look at the BridgeMT driver program (whose complete listing is found in
Appendix B). Section 4.2 describes the internal data fields of the BridgeMT object. Section 3.3 contains the
prototypes and descriptions of all Bridge methods.

18

SPOOLES 2.2 Wrapper Objects : January 2, 1999 19

4.1 A quick look at the multithreaded driver program

The entire listing of this multithreaded driver is found in Appendix B. We now extract parts of the code.

• Decode the input.

msglvl = atoi(argv[1]) ;
msgFileName = argv[6] ;
neqns = atoi(argv[3]) ;
type = atoi(argv[4]) ;
symmetryflag = atoi(argv[5]) ;
mtxFileName = argv[6] ;
rhsFileName = argv[7] ;
solFileName = argv[8] ;
seed = atoi(argv[9]) ;
nthread = atoi(argv[10]) ;

Here is a description of the input parameters.

– msglvl is the message level.

– msgFile is the message file name

– neqns is the number of equations.

– type is the type of entries: 1 (SPOOLES REAL) or 2 (SPOOLES COMPLEX).

– symmetryflag is the type of matrix symmetry: 0 (SPOOLES SYMMETRIC), 1 (SPOOLES HERMITIAN)
or 2 (SPOOLES NONSYMMETRIC).

– mtxFile is the name of the file from which to read the InpMtx object for A. The file name must
have the form *.inpmtxb for a binary file or *.inpmtxf for a formatted file.

– rhsFile is the name of the file from which to read the DenseMtx object for the right hand side Y .
The file name must have the form *.densemtxb for a binary file or *.densemtxf for a formatted
file.

– solFile is the name of the file to write the DenseMtx object for the solution X . The file name
must have the form *.densemtxb for a binary file or *.densemtxf for a formatted file, "none"
for no output, or any other name for a human-readable listing.

– seed is a random number seed used in the ordering process.

– nthread is the number of threads to be used in the factorization and solve.

• Read in the InpMtx object for A.

mtxA = InpMtx_new() ;
rc = InpMtx_readFromFile(mtxA, mtxFileName) ;

The rc parameter is the error return. In the driver it is tested for an error, but we omit this from the
present discussion.

• Read in the DenseMtx object for Y .

mtxY = DenseMtx_new() ;
rc = DenseMtx_readFromFile(mtxY, mtxFileName) ;
DenseMtx_dimensions(mtxY, &nrow, &nrhs) ;

SPOOLES 2.2 Wrapper Objects : January 2, 1999 20

The nrhs parameter contains the number of right hand sides, or equivalently, the number of columns
in Y .

• Create and setup the BridgeMT object.

bridge = BridgeMT_new() ;
BridgeMT_setMatrixParams(bridge, neqns, type, symmetryflag) ;
BridgeMT_setMessageInfo(bridge, msglvl, msgFile) ;
rc = BridgeMT_setup(bridge, mtxA) ;

The BridgeMT object is allocated by BridgeMT new(), and various parameters are set. The actual
ordering of the matrix, symbolic factorization, and permutation creation are performed inside the
BridgeMT setup() method.

• Setup the numerical factorization.

rc = BridgeMT_factorSetup(bridge, nthread, 0, 0.0) ;

This step tells the BridgeMT object the number of threads to be used in the factorization and solve.
The third and fourth parameters define the particular type of map of the computations to processors.
When the third parameter is zero, the defaults map is used. If rc = 1, the setup completed without
any error.

• Compute the matrix factorization.

permuteflag = 1 ;
rc = BridgeMT_factor(bridge, mtxA, permuteflag, &error) ;

When permuteflag is 1, it means that the matrix in mtxA has not yet been permuted into the new
ordering and so is done inside the method. The error flag is filled with an error code that tells how
far the factorization was able to proceed. If rc = 1, the factorization completed without any error.

• Setup the solve.

rc = BridgeMT_solveSetup(bridge) ;

This method sets up the environment for a parallel solve. If rc = 1, the setup completed without any
error.

• Solve the linear system.

mtxX = DenseMtx_new() ;
DenseMtx_init(mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxX) ;
rc = BridgeMT_solve(bridge, permuteflag, mtxX, mtxY) ;

The DenseMtx object mtxX is created and initialized to be the same type and size as mtxY. Its entries
are explicitly zeroed (this is not necessary but is a good idea in general). The solution is then solved.
Again, note the presence of permuteflag. When 1, mtxY needs to be permuted into the new ordering,
and mtxX is returned in the original ordering.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 21

4.2 The BridgeMT Data Structure

The BridgeMT structure has the following fields.

• Graph parameters:

– int neqns : number of equations, i.e., number of vertices in the graph.

– int nedges : number of edges (includes (u, v), (v, u) and (u, u)).

– int Neqns : number of equations in the compressed graph.

– int Nedges : number of edges in the compressed graph.

• Ordering parameters:

– int maxdomainsize : maximum size of a subgraph to not split any further during the nested
dissection process.

– int maxnzeros : maximum number of zeros to allow in a front during the supernode amalgama-
tion process.

– int maxsize : maximum size of a front when the fronts are split.

– int seed : random number seed.

– double compressCutoff : if the Neqns < compressCutoff ∗ neqns, then the compressed graph
is formed, ordered and used to create the symbolic factorization.

• Matrix parameters:

– int type : type of entries, SPOOLES REAL or SPOOLES COMPLEX, default value is SPOOLES REAL.

– int symmetryflag : type of symmetry for the matrix, SPOOLES SYMMETRIC, SPOOLES HERMITIAN
or SPOOLES NONSYMMETRIC, default value is SPOOLES SYMMETRIC.

• Factorization parameters:

– int sparsityflag : SPOOLES DENSE FRONTS for a direct factorization, or SPOOLES SPARSE FRONTS
for an approximate factorization, default value is SPOOLES DENSE FRONTS.

– int pivotingflag : SPOOLES PIVOTING for pivoting enabled, or SPOOLES NO PIVOTING for no
pivoting, default value is SPOOLES NO PIVOTING.

– double tau : used when pivoting is enabled, all entries in L and U have magnitude less than or
equal to tau, default value is 100.

– double droptol : used for an approximation, all entries in L and U that are kept have magnitude
greater than or equal to droptol. default value is 0.001.

– PatchAndGoInfo *patchinfo : pointer to an object that controls special factorizations for op-
timization matrices and singular matrices from structural analysis, default value is NULL which
means no special action is taken. See the Reference Manual for more information.

• Pointers to objects:

– ETree *frontETree : object that defines the factorizations, e.g., the number of fronts, the tree
they form, the number of internal and external rows for each front, and the map from vertices to
the front where it is contained.

– IVL *symbfacIVL : object that contains the symbolic factorization of the matrix.

– SubMtxManager *mtxmanager : object that manages the SubMtx objects that store the factor
entries and are used in the solves.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 22

– FrontMtx *frontmtx : object that stores the L, D and U factor matrices.

– IV *oldToNewIV : object that stores old-to-new permutation vector.

– IV *newToOldIV : object that stores new-to-old permutation vector.

• Multithreaded information:

– int nthread : number of threads to be used during the factor and solve.

– int lookahead : this parameter is used to possibly reduce the idle time of threads during the
factorization. When lookahead is 0, the factorization uses the least amount of working storage
but threads can be idle. Larger values of lookahead tend to increase the working storage but
may decrease the execution time. Values of lookahead greater than nthread are not useful.

– IV *ownersIV : this object contains the map from fronts to their owning processors.

– SolveMap *solvemap : this object contains the map from factor submatrices to their owning
processors.

– DV *cumopsDV : this object is formed when the map from fronts to owning processors is created.
Its size is nthread and contains the operations that each thread will perform during a direct
factorization without pivoting.

• Message information, statistics and cpu times:

– int msglvl : message level for output. When 0, no output, When 1, just statistics and cpu times.
When greater than 1, more and more output.

– FILE *msgFile : message file for output. When msglvl > 0, msgFile must not be NULL.

– int stats[6] : statistics for the factorization.

stats[0] : # of pivots
stats[1] : # of pivot tests
stats[2] : # of delayed rows and columns

stats[3] : # of entries in D
stats[4] : # of entries in L
stats[5] : # of entries in U

– double cpus[16] : cpus for the different functions.

cpus[0] : time to construct Graph
cpus[1] : time to compress Graph
cpus[2] : time to order Graph
cpus[3] : time for symbolic factorization
cpus[4] : total setup time
cpus[5] : time to setup the factorization
cpus[6] : time to permute matrix
cpus[7] : time to initialize front matrix

cpus[8] : time to factor matrix
cpus[9] : time to post-process matrix
cpus[10] : total factor time
cpus[11] : time to setup the parallel solve
cpus[12] : time to permute rhs
cpus[13] : time to solve
cpus[14] : time to permute solution
cpus[15] : total solve time

4.3 Prototypes and descriptions of BridgeMT methods

This section contains brief descriptions including prototypes of all methods that belong to the BridgeMT
object.

4.3.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 23

1. BridgeMT * BridgeMT_new (void) ;

This method simply allocates storage for the BridgeMT structure and then sets the default fields by a
call to BridgeMT setDefaultFields().

2. int BridgeMT_setDefaultFields (BridgeMT *bridge) ;

The structure’s fields are set to default values:

• neqns = nedges = Neqns = Nedges = 0.

• maxdomainsize = maxnzeros = maxsize = seed = -1. compressCutoff = 0.

• type = SPOOLES REAL.

• symmetryflag = SPOOLES SYMMETRIC.

• sparsityflag = SPOOLES DENSE FRONTS.

• pivotingflag = SPOOLES NO PIVOTING.

• tau = 100., droptol = 0.001.

• lookahead = nthread = 0.

• patchinfo, frontETree, symbfacIVL, mtxmanager, frontmtx, oldToNewIV, newToOldIV, ownersIV,
solvemap and cumopsDV are all set to NULL.

The stats[6] and cpus[16] vectors are filled with zeros.

Return value: 1 for a normal return, -1 if bridge is NULL.

3. int BridgeMT_clearData (BridgeMT *bridge) ;

This method clears the object and free’s any owned data. It then calls BridgeMT setDefaultFields().

Return value: 1 for a normal return, -1 if bridge is NULL.

4. int BridgeMT_free (BridgeMT *bridge) ;

This method releases any storage by a call to BridgeMT clearData() and then free the space for
bridge.

Return value: 1 for a normal return, -1 if bridge is NULL.

4.3.2 Instance methods

1. int BridgeMT_oldToNewIV (BridgeMT *bridge, IV **pobj) ;

This method fills *pobj with its oldToNewIV pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

2. int BridgeMT_newToOldIV (BridgeMT *bridge, IV **pobj) ;

This method fills *pobj with its newToOldIV pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

3. int BridgeMT_frontETree (BridgeMT *bridge, ETree **pobj) ;

This method fills *pobj with its frontETree pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

4. int BridgeMT_symbfacIVL (BridgeMT *bridge, IVL **pobj) ;

This method fills *pobj with its symbfacIVL pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 24

5. int BridgeMT_mtxmanager (BridgeMT *bridge, SubMtxManager **pobj) ;

This method fills *pobj with its mtxmanager pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

6. int BridgeMT_frontmtx (BridgeMT *bridge, FrontMtx **pobj) ;

This method fills *pobj with its frontmtx pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

7. int BridgeMT_ownersIV (BridgeMT *bridge, IV **pobj) ;

This method fills *pobj with its ownersIV pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

8. int BridgeMT_solvemap (BridgeMT *bridge, SolveMap **pobj) ;

This method fills *pobj with its solvemap pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

9. int BridgeMT_nthread (BridgeMT *bridge, int *pnthread) ;

This method fills *pobj with the number of threads.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pnthread is NULL.

10. int BridgeMT_lookahead (BridgeMT *bridge, int *plookahead) ;

This method fills *pobj with the lookahead parameter.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if plookahead is NULL.

4.3.3 Parameter methods

1. int BridgeMT_setMatrixParams (BridgeMT *bridge, int neqns, int type, int symmetryflag) ;

This method sets the number of equations, type of entries, and symmetry type of the matrix.

Return value:

1 normal return
-1 bridge is NULL
-2 neqns ≤ 0

-3 type is invalid
-4 symmetryflag is invalid
-5 symmetry flag is Hermitian but type is real

2. int BridgeMT_setOrderingParams (BridgeMT *bridge, int maxdomainsize, int maxnzeros,
int maxsize, int seed, double compressCutoff) ;

This method sets parameters needed for the ordering.

Return value:

1 normal return
-1 bridge is NULL
-2 maxdomainsize ≤ 0

-3 maxsize ≤ 0
-4 compressCutoff > 1

3. int BridgeMT_setFactorParams (BridgeMT *bridge, int sparsityflag, int pivotingflag,
double tau, double droptol, int lookahead, PatchAndGoInfo *patchinfo) ;

This method sets parameters needed for the factorization.

Return value:

SPOOLES 2.2 Wrapper Objects : January 2, 1999 25

1 normal return
-1 bridge is NULL
-2 sparsityflag is invalid
-3 pivotingflag is invalid

-4 tau < 2.0
-5 droptol < 0.0
-6 lookahead < 0

4. int BridgeMT_setMessagesInfo (BridgeMT *bridge, int msglvl, FILE *msgFile) ;

This method sets the message level and file.

Return value: 1 for a normal return, -1 if bridge is NULL, -2 if msglvl > 0 and msgFile is NULL.

4.3.4 Setup methods

1. int BridgeMT_setup (BridgeMT *bridge, InpMtx *mtxA) ;

This method orders the graph, generates the front tree, computes the symbolic factorization, and
creates the two permutation vectors.

Return value: 1 for a normal return, -1 if bridge is NULL, -2 if mtxA is NULL.

2. int BridgeMT_factorStats (BridgeMT *bridge, int type, int symmetryflag, int *pnfront,
int *pnfactorind, int *pnfactorent, int *pnsolveops, double *pnfactorops) ;

This method takes as input the type and symmetry of the matrix, and fills the pointer fields with
the number of fronts, factor indices, factor entries, forward and back solve operations, and factor
operations.

Return value:

1 normal return
-1 bridge is NULL
-2 type is invalid
-3 symmetryflag is invalid
-4 type is real but symmetryflag is Hermitian
-5 front tree is not present

-6 pnfront is NULL
-7 pnfactorind is NULL
-8 pnfactorent is NULL
-9 pnsolveops is NULL

-10 pnfactorops is NULL

4.3.5 Factor methods

1. int BridgeMT_factorSetup (BridgeMT *bridge, int nthread, int maptype, double cutoff) ;

This method constructs the map from fronts to owning threads, and computes the number of factor
operations that each thread will execute. The maptype parameter can be one of four values:

• 1 — wrap map

• 2 — balanced map

• 3 — subtree-subset map

• 4 — domain decomposition map

The wrap map and balanced map are not recommended. The subtree-subset map is a good map with a
very well balanced nested dissection ordering. The domain decomposition map is recommended when
the nested dissection tree is imbalanced or for the multisection ordering. The domain decomposition
map requires a cutoff parameter in [0, 1] which specifies the relative size of a subtree that forms a
domain. If maptype is not one of 1, 2, 3 or 4, the default map is used: domain decomposition with
cutoff = 1/(2*nthread).

Return value:

SPOOLES 2.2 Wrapper Objects : January 2, 1999 26

1 normal return, factorization did complete
-1 bridge is NULL

-2 nthread < 1
-5 frontETree is not present

2. int BridgeMT_factor (BridgeMT *bridge, InpMtx *mtxA, int permuteflag, int *perror) ;

This method permutes the matrix into the new ordering (if permuteflag is 1), factors the matrix, and
then post-processes the factors.

Return value:

1 normal return, factorization did complete
0 factorization did not complete

-1 bridge is NULL
-2 mtxA is NULL
-3 perror is NULL

4.3.6 Solve methods

1. int BridgeMT_solveSetup (BridgeMT *bridge) ;

This method creates the SolveMap object that governs the parallel solve.

Return value:

1 normal return
-1 bridge is NULL

-2 frontMtx is NULL
-3 frontMtx needs to be postprocessed

2. int BridgeMT_solve (BridgeMT *bridge, int permuteflag, DenseMtx *mtxX, DenseMtx *mtxY) ;

If permuteflag is 1, then mtxY is permuted into the new ordering. The linear system AX = Y is
solved. If permuteflag is 1, then mtxX is permuted into the old ordering.

Return value:

1 normal return
-1 bridge is NULL
-2 X is NULL
-3 Y is NULL

-4 frontmtx is NULL
-5 mtxmanager is NULL
-6 oldToNewIV needed, but not available
-7 newToOldIV needed, but not available

Chapter 5

The MPI Wrapper Object and Driver

The goal is to solve AX = Y in a distributed environment using MPI. Section 9 of the User’s Manual
presents a listing of the AllInOneMPI driver program for solving AX = Y . There are thirteen steps, and
each requires “mid-level” knowledge of several objects of the SPOOLES library. To reduce the complexity
of using the library, we created the BridgeMPI object. The term “bridge” symbolizes spanning the distance
between the SPOOLES library and the CSAR Nastran application code. The ten steps of the allInOneMPI
driver program is reduced to five using the BridgeMPI object.

• Initialization and setup step.

Here the BridgeMPI object is allocated via a call to BridgeMPI new(). Parameters are set using
BridgeMPI set*() methods. The setup phase orders the matrix and prepares all the necessary
SPOOLES data structures for the factorization and solve that follows.

• Setup the numerical factorization.

In this step, BridgeMPI factorSetup() is called to define the parallelism for the factorization, and all
data structures for the parallel execution are created.

• Factorization step.

The matrix is factored via a call to BridgeMPI factor().

• Setup the numerical solves.

BridgeMPI solveSetup() is called to set up the parallel solves. This must be called once after a
factorization, one or more solves may follow.

• Solution step.

The linear system is solved via a call to BridgeMPI solve().

The BridgeMPI object has many parameters that control the ordering of the matrix, the pivoting tolerance
(if pivoting is requested), the drop tolerance (for an approximate factorization), and so on. Rather than
burden the user with the knowledge of and setting these parameters, there are decent default values built
into the object. Using the BridgeMPI object to solve a linear system of equations can be broken down into
three steps.

Section 5.1 takes a quick look at the BridgeMPI driver program (whose complete listing is found in
Appendix C). Section 5.2 describes the internal data fields of the BridgeMPI object. Section 3.3 contains
the prototypes and descriptions of all Bridge methods.

27

SPOOLES 2.2 Wrapper Objects : January 2, 1999 28

5.1 A quick look at the MPI driver program

The entire listing of this MPI driver is found in Appendix C. We now extract parts of the code.

• Decode the input.

msglvl = atoi(argv[1]) ;
msgFileName = argv[6] ;
neqns = atoi(argv[3]) ;
type = atoi(argv[4]) ;
symmetryflag = atoi(argv[5]) ;
mtxFileName = argv[6] ;
rhsFileName = argv[7] ;
solFileName = argv[8] ;
seed = atoi(argv[9]) ;

Here is a description of the input parameters.

– msglvl is the message level.
– msgFile is the message file name

– neqns is the number of equations.
– type is the type of entries: 1 (SPOOLES REAL) or 2 (SPOOLES COMPLEX).

– symmetryflag is the type of matrix symmetry: 0 (SPOOLES SYMMETRIC), 1 (SPOOLES HERMITIAN)
or 2 (SPOOLES NONSYMMETRIC).

– mtxFile is the name of the file from which to read the InpMtx object for A. The file name must
have the form *.inpmtxb for a binary file or *.inpmtxf for a formatted file.

– rhsFile is the name of the file from which to read the DenseMtx object for the right hand side Y .
The file name must have the form *.densemtxb for a binary file or *.densemtxf for a formatted
file.

– solFile is the name of the file to write the DenseMtx object for the solution X . The file name
must have the form *.densemtxb for a binary file or *.densemtxf for a formatted file, "none"
for no output, or any other name for a human-readable listing.

– seed is a random number seed used in the ordering process.

• Processor 0 reads in the InpMtx object for A.

mtxA = InpMtx_new() ;
rc = InpMtx_readFromFile(mtxA, mtxFileName) ;

The rc parameter is the error return. Processor 0 then broadcasts the error return to the other
processors. If an error occured reading in the matrix, all processors call MPI Finalize() and exit.

• Processor 0 reads in the DenseMtx object for Y .

mtxY = DenseMtx_new() ;
rc = DenseMtx_readFromFile(mtxY, mtxFileName) ;
DenseMtx_dimensions(mtxY, &nrow, &nrhs) ;

The nrhs parameter contains the number of right hand sides, or equivalently, the number of columns
in Y . Processor 0 then broadcasts the error return to the other processors. If an error occured reading
in the matrix, all processors call MPI Finalize() and exit.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 29

• Create and setup the BridgeMPI object.

bridge = BridgeMPI_new() ;
BridgeMPI_setMPIparams(bridge, nproc, myid, MPI_COMM_WORLD) ;
BridgeMPI_setMatrixParams(bridge, neqns, type, symmetryflag) ;
BridgeMPI_setMessageInfo(bridge, msglvl, msgFile) ;
rc = BridgeMPI_setup(bridge, mtxA) ;

The BridgeMPI object is allocated by BridgeMPI new(), and various parameters are set. The actual
ordering of the matrix, symbolic factorization, and permutation creation are performed inside the
BridgeMPI setup() method.

• Setup the numerical factorization.

rc = BridgeMPI_factorSetup(bridge, 0, 0.0) ;

This step tells the BridgeMPI object the number of threads to be used in the factorization and solve.
The second and third parameters define the particular type of map of the computations to processors.
When the second parameter is zero, the defaults map is used. If rc = 1, the setup completed without
any error.

• Compute the matrix factorization.

permuteflag = 1 ;
rc = BridgeMPI_factor(bridge, mtxA, permuteflag, &error) ;

When permuteflag is 1, it means that the matrix in mtxA has not yet been permuted into the new
ordering and so is done inside the method. The error flag is filled with an error code that tells how
far the factorization was able to proceed. If rc = 1, the factorization completed without any error.

• Setup the solve.

rc = BridgeMPI_solveSetup(bridge) ;

This method sets up the environment for a parallel solve. It is called once per factorization, not once
per solve. If rc = 1, the setup completed without any error.

• Solve the linear system. Processor 0 initializes the DenseMtx object mtxX to hold the global solution
X . Its entries are explicitly zeroed (this is not necessary but is a good idea in general). The solution
is then solved.

mtxX = DenseMtx_new() ;
DenseMtx_init(mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxX) ;

All processors then cooperate to compute the solution X .

rc = BridgeMPI_solve(bridge, permuteflag, mtxX, mtxY) ;

Again, note the presence of permuteflag. When 1, mtxY needs to be permuted into the new ordering,
and mtxX is returned in the original ordering.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 30

5.2 The BridgeMPI Data Structure

The BridgeMPI structure has the following fields.

• Graph parameters:

– int neqns : number of equations, i.e., number of vertices in the graph.

– int nedges : number of edges (includes (u, v), (v, u) and (u, u)).

– int Neqns : number of equations in the compressed graph.

– int Nedges : number of edges in the compressed graph.

• Ordering parameters:

– int maxdomainsize : maximum size of a subgraph to not split any further during the nested
dissection process.

– int maxnzeros : maximum number of zeros to allow in a front during the supernode amalgama-
tion process.

– int maxsize : maximum size of a front when the fronts are split.

– int seed : random number seed.

– double compressCutoff : if the Neqns < compressCutoff ∗ neqns, then the compressed graph
is formed, ordered and used to create the symbolic factorization.

• Matrix parameters:

– int type : type of entries, SPOOLES REAL or SPOOLES COMPLEX, default value is SPOOLES REAL.

– int symmetryflag : type of symmetry for the matrix, SPOOLES SYMMETRIC, SPOOLES HERMITIAN
or SPOOLES NONSYMMETRIC, default value is SPOOLES SYMMETRIC.

• Factorization parameters:

– int sparsityflag : SPOOLES DENSE FRONTS for a direct factorization, or SPOOLES SPARSE FRONTS
for an approximate factorization, default value is SPOOLES DENSE FRONTS.

– int pivotingflag : SPOOLES PIVOTING for pivoting enabled, or SPOOLES NO PIVOTING for no
pivoting, default value is SPOOLES NO PIVOTING.

– double tau : used when pivoting is enabled, all entries in L and U have magnitude less than or
equal to tau, default value is 100.

– double droptol : used for an approximation, all entries in L and U that are kept have magnitude
greater than or equal to droptol. default value is 0.001.

– PatchAndGoInfo *patchinfo : pointer to an object that controls special factorizations for op-
timization matrices and singular matrices from structural analysis, default value is NULL which
means no special action is taken. See the Reference Manual for more information.

– int lookahead : this parameter is used to possibly reduce the idle time of threads during the
factorization. When lookahead is 0, the factorization uses the least amount of working storage
but threads can be idle. Larger values of lookahead tend to increase the working storage but
may decrease the execution time. Values of lookahead greater than nthread are not useful.

• Pointers to objects:

– ETree *frontETree : object that defines the factorizations, e.g., the number of fronts, the tree
they form, the number of internal and external rows for each front, and the map from vertices to
the front where it is contained.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 31

– IVL *symbfacIVL : object that contains the symbolic factorization of the matrix.
– SubMtxManager *mtxmanager : object that manages the SubMtx objects that store the factor

entries and are used in the solves.
– FrontMtx *frontmtx : object that stores the L, D and U factor matrices.
– IV *oldToNewIV : object that stores old-to-new permutation vector.
– IV *newToOldIV : object that stores new-to-old permutation vector.

• MPI information:

– int nproc : number of processors.
– int myid : id of this processor.
– MPI Comm : MPI communicator.
– IV *ownersIV : this object contains the map from fronts to their owning processors.
– SolveMap *solvemap : this object contains the map from factor submatrices to their owning

processors.
– DV *cumopsDV : this object is formed when the map from fronts to owning processors is created.

Its size is nthread and contains the operations that each thread will perform during a direct
factorization without pivoting.

– IV *vtxmapIV : this object contains the map from vertices to their owning processors.
– IV *rowmapIV : this object contains the map from rows to their owning processors during the

solve. This may be different from vtxmapIV if pivoting is enabled.
– IV *ownedColumnsIV : this object contains the columns of the matrix that are owned by this

processor during the solve.
– InpMtx *Aloc : this object contains the entries of A that are local to this processor during the

factorization.
– DenseMtx *Xloc : this object contains the local solution during the solve.
– DenseMtx *Yloc : this object contains the local right hand side during the solve.

• Message information, statistics and cpu times:

– int msglvl : message level for output. When 0, no output, When 1, just statistics and cpu times.
When greater than 1, more and more output.

– FILE *msgFile : message file for output. When msglvl > 0, msgFile must not be NULL.
– int stats[6] : statistics for the factorization.

stats[0] : # of pivots
stats[1] : # of pivot tests
stats[2] : # of delayed rows and columns

stats[3] : # of entries in D
stats[4] : # of entries in L
stats[5] : # of entries in U

– double cpus[22] : cpus for the different functions.

cpus[0] : construct Graph
cpus[1] : compress Graph
cpus[2] : order Graph
cpus[3] : symbolic factorization
cpus[4] : broadcast the front tree
cpus[5] : broadcast symbolic factor
cpus[6] : total setup time
cpus[7] : setup the factorization
cpus[8] : permute matrix
cpus[9] : distribute matrix
cpus[10] : initialize front matrix

cpus[11] : factor matrix
cpus[12] : post-process matrix
cpus[13] : total factor time
cpus[14] : setup the parallel solve
cpus[15] : permute rhs
cpus[16] : distribute rhs
cpus[17] : create solution matrix
cpus[18] : solve
cpus[19] : gather solution
cpus[20] : permute solution
cpus[21] : total solve time

SPOOLES 2.2 Wrapper Objects : January 2, 1999 32

5.3 Prototypes and descriptions of BridgeMPI methods

This section contains brief descriptions including prototypes of all methods that belong to the BridgeMPI
object.

5.3.1 Basic methods

As usual, there are four basic methods to support object creation, setting default fields, clearing any allocated
data, and free’ing the object.

1. BridgeMPI * BridgeMPI_new (void) ;

This method simply allocates storage for the BridgeMPI structure and then sets the default fields by
a call to BridgeMPI setDefaultFields().

2. int BridgeMPI_setDefaultFields (BridgeMPI *bridge) ;

The structure’s fields are set to default values:

• neqns = nedges = Neqns = Nedges = 0.

• maxdomainsize = maxnzeros = maxsize = seed = -1. compressCutoff = 0.

• type = SPOOLES REAL.

• symmetryflag = SPOOLES SYMMETRIC.

• sparsityflag = SPOOLES DENSE FRONTS.

• pivotingflag = SPOOLES NO PIVOTING.

• tau = 100., droptol = 0.001.

• lookahead = nproc = 0.

• myid = -1.

• patchinfo, frontETree, symbfacIVL, mtxmanager, frontmtx, oldToNewIV, newToOldIV, ownersIV,
solvemap, cumopsDV, vtxmapIV, rowmapIV, ownedColumnsIV, Aloc, Xloc, Yloc and comm are all
set to NULL.

The stats[6] and cpus[22] vectors are filled with zeros.

Return value: 1 for a normal return, -1 if bridge is NULL.

3. int BridgeMPI_clearData (BridgeMPI *bridge) ;

This method clears the object and free’s any owned data. It then calls BridgeMPI setDefaultFields().

Return value: 1 for a normal return, -1 if bridge is NULL.

4. int BridgeMPI_free (BridgeMPI *bridge) ;

This method releases any storage by a call to BridgeMPI clearData() and then free the space for
bridge.

Return value: 1 for a normal return, -1 if bridge is NULL.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 33

5.3.2 Instance methods

1. int BridgeMPI_oldToNewIV (BridgeMPI *bridge, IV **pobj) ;

This method fills *pobj with its oldToNewIV pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

2. int BridgeMPI_newToOldIV (BridgeMPI *bridge, IV **pobj) ;

This method fills *pobj with its newToOldIV pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

3. int BridgeMPI_frontETree (BridgeMPI *bridge, ETree **pobj) ;

This method fills *pobj with its frontETree pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

4. int BridgeMPI_symbfacIVL (BridgeMPI *bridge, IVL **pobj) ;

This method fills *pobj with its symbfacIVL pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

5. int BridgeMPI_mtxmanager (BridgeMPI *bridge, SubMtxManager **pobj) ;

This method fills *pobj with its mtxmanager pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

6. int BridgeMPI_frontmtx (BridgeMPI *bridge, FrontMtx **pobj) ;

This method fills *pobj with its frontmtx pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

7. int BridgeMPI_ownersIV (BridgeMPI *bridge, IV **pobj) ;

This method fills *pobj with its ownersIV pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

8. int BridgeMPI_solvemap (BridgeMPI *bridge, SolveMap **pobj) ;

This method fills *pobj with its solvemap pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

9. int BridgeMPI_vtxmapIV (BridgeMPI *bridge, IV **pobj) ;

This method fills *pobj with its vtxmapIV pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

10. int BridgeMPI_rowmapIV (BridgeMPI *bridge, IV **pobj) ;

This method fills *pobj with its rowmapIV pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

11. int BridgeMPI_ownedColumns (BridgeMPI *bridge, IV **pobj) ;

This method fills *pobj with its ownedColumnsIV pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

SPOOLES 2.2 Wrapper Objects : January 2, 1999 34

12. int BridgeMPI_Xloc (BridgeMPI *bridge, DenseMtx **pobj) ;

This method fills *pobj with its Xloc pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

13. int BridgeMPI_Yloc (BridgeMPI *bridge, DenseMtx **pobj) ;

This method fills *pobj with its Yloc pointer.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL.

14. int BridgeMPI_nproc (BridgeMPI *bridge, int *pnproc) ;

This method fills *pobj with the number of processors.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pnproc is NULL.

15. int BridgeMPI_myid (BridgeMPI *bridge, int *pmyid) ;

This method fills *pobj with the id of this processor.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pmyid is NULL.

16. int BridgeMPI_lookahead (BridgeMPI *bridge, int *plookahead) ;

This method fills *pobj with the lookahead parameter.

Return value: 1 for a normal return, -1 if bridge is NULL. -2 if plookahead is NULL.

5.3.3 Parameter methods

1. int BridgeMPI_setMatrixParams (BridgeMPI *bridge, int neqns, int type, int symmetryflag) ;

This method sets the number of equations, type of entries, and symmetry type of the matrix.

Return value:

1 normal return
-1 bridge is NULL
-2 neqns ≤ 0

-3 type is invalid
-4 symmetryflag is invalid
-5 symmetry flag is Hermitian but type is real

2. int BridgeMPI_setMPIparams (BridgeMPI *bridge, int nproc, int myid, MPI_Comm comm) ;

This method sets the MPI environment parameters.

Return value:

1 normal return
-1 bridge is NULL

-2 nproc ≤ 0
-3 myid < 0 or >= nproc

3. int BridgeMPI_setOrderingParams (BridgeMPI *bridge, int maxdomainsize, int maxnzeros,
int maxsize, int seed, double compressCutoff) ;

This method sets parameters needed for the ordering.

Return value:

1 normal return
-1 bridge is NULL
-2 maxdomainsize ≤ 0

-3 maxsize ≤ 0
-4 compressCutoff > 1

SPOOLES 2.2 Wrapper Objects : January 2, 1999 35

4. int BridgeMPI_setFactorParams (BridgeMPI *bridge, int sparsityflag, int pivotingflag,
double tau, double droptol, int lookahead, PatchAndGoInfo *patchinfo) ;

This method sets parameters needed for the factorization.

Return value:

1 normal return
-1 bridge is NULL
-2 sparsityflag is invalid
-3 pivotingflag is invalid

-4 tau < 2.0
-5 droptol < 0.0
-6 lookahead < 0

5. int BridgeMPI_setMessagesInfo (BridgeMPI *bridge, int msglvl, FILE *msgFile) ;

This method sets the message level and file.

Return value: 1 for a normal return, -1 if bridge is NULL, -2 if msglvl > 0 and msgFile is NULL.

5.3.4 Setup methods

1. int BridgeMPI_setup (BridgeMPI *bridge, InpMtx *mtxA) ;

This method orders the graph, generates the front tree, computes the symbolic factorization, and
creates the two permutation vectors.

Return value: 1 for a normal return, -1 if bridge is NULL, -2 if mtxA is NULL.

2. int BridgeMPI_factorStats (BridgeMPI *bridge, int type, int symmetryflag, int *pnfront,
int *pnfactorind, int *pnfactorent, int *pnsolveops, double *pnfactorops) ;

This method takes as input the type and symmetry of the matrix, and fills the pointer fields with
the number of fronts, factor indices, factor entries, forward and back solve operations, and factor
operations.

Return value:

1 normal return
-1 bridge is NULL
-2 type is invalid
-3 symmetryflag is invalid
-4 type is real but symmetryflag is Hermitian
-5 front tree is not present

-6 pnfront is NULL
-7 pnfactorind is NULL
-8 pnfactorent is NULL
-9 pnsolveops is NULL

-10 pnfactorops is NULL

5.3.5 Factor methods

1. int BridgeMPI_factorSetup (BridgeMPI *bridge, int maptype, double cutoff) ;

This method constructs the map from fronts to owning processors, and computes the number of factor
operations that each thread will execute. The maptype parameter can be one of four values:

• 1 — wrap map

• 2 — balanced map

• 3 — subtree-subset map

• 4 — domain decomposition map

SPOOLES 2.2 Wrapper Objects : January 2, 1999 36

The wrap map and balanced map are not recommended. The subtree-subset map is a good map with a
very well balanced nested dissection ordering. The domain decomposition map is recommended when
the nested dissection tree is imbalanced or for the multisection ordering. The domain decomposition
map requires a cutoff parameter in [0, 1] which specifies the relative size of a subtree that forms a
domain. If maptype is not one of 1, 2, 3 or 4, the default map is used: domain decomposition with
cutoff = 1/(2*nthread).

Return value: 1 normal return, factorization did complete, -1 bridge is NULL, -2 frontETree is not
present.

2. int BridgeMPI_factor (BridgeMPI *bridge, InpMtx *mtxA, int permuteflag, int *perror) ;

This method permutes the matrix into the new ordering (if permuteflag is 1), factors the matrix, and
then post-processes the factors.

Return value:

1 normal return, factorization did complete
0 factorization did not complete

-1 bridge is NULL
-2 mtxA is NULL
-3 perror is NULL

5.3.6 Solve methods

1. int BridgeMPI_solveSetup (BridgeMPI *bridge) ;

This method creates the SolveMap object that governs the parallel solve.

Return value:

1 normal return
-1 bridge is NULL

-2 frontMtx is NULL
-3 frontMtx needs to be postprocessed

2. int BridgeMPI_solve (BridgeMPI *bridge, int permuteflag, DenseMtx *mtxX, DenseMtx *mtxY) ;

If permuteflag is 1, then mtxY is permuted into the new ordering. The linear system AX = Y is
solved. If permuteflag is 1, then mtxX is permuted into the old ordering.

Return value:

1 normal return
-1 bridge is NULL
-2 X is NULL
-3 Y is NULL

-4 frontmtx is NULL
-5 mtxmanager is NULL
-6 oldToNewIV needed, but not available
-7 newToOldIV needed, but not available

Appendix A

testWrapper.c — A Serial Driver
Program

/* testWrapper.c */

#include "../Bridge.h"

/*--*/
int
main (int argc, char *argv[]) {
/*

purpose -- main driver program to solve a linear system

where the matrix and rhs are read in from files
and the solution is written to a file.

created -- 98oct31, cca

*/
Bridge *bridge ;
char *mtxFileName, *rhsFileName, *solFileName ;
double nfactorops ;
FILE *msgFile ;
InpMtx *mtxA ;
int error, msglvl, neqns, nfent, nfind, nfront, nrhs, nrow,

nsolveops, permuteflag, rc, seed, symmetryflag, type ;
DenseMtx *mtxX, *mtxY ;
/*--*/
/*

get input parameters

*/
if (argc != 10) {

fprintf(stdout,
"\n\n usage : %s msglvl msgFile neqns type symmetryflag"

37

SPOOLES 2.2 Wrapper Objects : January 2, 1999 38

"\n mtxFile rhsFile seed"
"\n msglvl -- message level"
"\n 0 -- no output"
"\n 1 -- timings and statistics"
"\n 2 and greater -- lots of output"
"\n msgFile -- message file"
"\n neqns -- # of equations"
"\n type -- type of entries"
"\n 1 -- real"
"\n 2 -- complex"
"\n symmetryflag -- symmetry flag"
"\n 0 -- symmetric"
"\n 1 -- hermitian"
"\n 2 -- nonsymmetric"
"\n neqns -- # of equations"
"\n mtxFile -- input file for A matrix InpMtx object"
"\n must be *.inpmtxf or *.inpmtxb"
"\n rhsFile -- input file for Y DenseMtx object"
"\n must be *.densemtxf or *.densemtxb"
"\n solFile -- output file for X DenseMtx object"
"\n must be none, *.densemtxf or *.densemtxb"
"\n seed -- random number seed"
"\n",
argv[0]) ;

return(0) ;
}
msglvl = atoi(argv[1]) ;
if (strcmp(argv[2], "stdout") == 0) {

msgFile = stdout ;
} else if ((msgFile = fopen(argv[2], "w")) == NULL) {

fprintf(stderr, "\n fatal error in %s"
"\n unable to open file %s\n",
argv[0], argv[2]) ;

return(-1) ;
}
neqns = atoi(argv[3]) ;
type = atoi(argv[4]) ;
symmetryflag = atoi(argv[5]) ;
mtxFileName = argv[6] ;
rhsFileName = argv[7] ;
solFileName = argv[8] ;
seed = atoi(argv[9]) ;
fprintf(msgFile,

"\n\n %s input :"
"\n msglvl = %d"
"\n msgFile = %s"
"\n neqns = %d"
"\n type = %d"
"\n symmetryflag = %d"
"\n mtxFile = %s"
"\n rhsFile = %s"

SPOOLES 2.2 Wrapper Objects : January 2, 1999 39

"\n solFile = %s"
"\n seed = %d"
"\n",
argv[0], msglvl, argv[2], neqns, type, symmetryflag,
mtxFileName, rhsFileName, solFileName, seed) ;

/*--*/
/*

read in the matrix

*/
mtxA = InpMtx_new() ;
rc = InpMtx_readFromFile(mtxA, mtxFileName) ;
if (rc != 1) {

fprintf(msgFile, "\n fatal error reading mtxA from file %s, rc = %d",
mtxFileName, rc) ;

fflush(msgFile) ;
exit(-1) ;

}
if (msglvl > 1) {

fprintf(msgFile, "\n\n InpMtx object ") ;
InpMtx_writeForHumanEye(mtxA, msgFile) ;
fflush(msgFile) ;

}
/*--*/
/*

read in the right hand side matrix

*/
mtxY = DenseMtx_new() ;
rc = DenseMtx_readFromFile(mtxY, rhsFileName) ;
if (rc != 1) {

fprintf(msgFile, "\n fatal error reading mtxY from file %s, rc = %d",
rhsFileName, rc) ;

fflush(msgFile) ;
exit(-1) ;

}
if (msglvl > 1) {

fprintf(msgFile, "\n\n DenseMtx object for right hand side") ;
DenseMtx_writeForHumanEye(mtxY, msgFile) ;
fflush(msgFile) ;

}
DenseMtx_dimensions(mtxY, &nrow, &nrhs) ;
/*--*/
/*

create and setup a Bridge object

*/

SPOOLES 2.2 Wrapper Objects : January 2, 1999 40

bridge = Bridge_new() ;
Bridge_setMatrixParams(bridge, neqns, type, symmetryflag) ;
Bridge_setMessageInfo(bridge, msglvl, msgFile) ;
rc = Bridge_setup(bridge, mtxA) ;
if (rc != 1) {

fprintf(stderr, "\n error return %d from Bridge_setup()", rc) ;
exit(-1) ;

}
fprintf(msgFile, "\n\n ----- SETUP -----\n") ;
fprintf(msgFile,

"\n CPU %8.3f : time to construct Graph"
"\n CPU %8.3f : time to compress Graph"
"\n CPU %8.3f : time to order Graph"
"\n CPU %8.3f : time for symbolic factorization"
"\n CPU %8.3f : total setup time\n",
bridge->cpus[0], bridge->cpus[1],
bridge->cpus[2], bridge->cpus[3], bridge->cpus[4]) ;

rc = Bridge_factorStats(bridge, type, symmetryflag, &nfront,
&nfind, &nfent, &nsolveops, &nfactorops) ;

if (rc != 1) {
fprintf(stderr,

"\n error return %d from Bridge_factorStats()", rc) ;
exit(-1) ;

}
fprintf(msgFile,

"\n\n factor matrix statistics"
"\n %d fronts, %d indices, %d entries"
"\n %d solve operations, %12.4e factor operations",
nfront, nfind, nfent, nsolveops, nfactorops) ;

fflush(msgFile) ;
/*--*/
/*

factor the matrix

*/
permuteflag = 1 ;
rc = Bridge_factor(bridge, mtxA, permuteflag, &error) ;
if (rc == 1) {

fprintf(msgFile, "\n\n factorization completed successfully\n") ;
} else {

fprintf(msgFile, "\n return code from factorization = %d"
"\n error code = %d",

rc, error) ;
exit(-1) ;

}
fprintf(msgFile, "\n\n ----- FACTORIZATION -----\n") ;
fprintf(msgFile,

"\n CPU %8.3f : time to permute original matrix"
"\n CPU %8.3f : time to initialize factor matrix"
"\n CPU %8.3f : time to compute factorization"

SPOOLES 2.2 Wrapper Objects : January 2, 1999 41

"\n CPU %8.3f : time to post-process factorization"
"\n CPU %8.3f : total factorization time\n",
bridge->cpus[5], bridge->cpus[6], bridge->cpus[7],
bridge->cpus[8], bridge->cpus[9]) ;

fprintf(msgFile, "\n\n factorization statistics"
"\n %d pivots, %d pivot tests, %d delayed vertices"
"\n %d entries in D, %d entries in L, %d entries in U",
bridge->stats[0], bridge->stats[1], bridge->stats[2],
bridge->stats[3], bridge->stats[4], bridge->stats[5]) ;

fprintf(msgFile,
"\n\n factorization: raw mflops %8.3f, overall mflops %8.3f",
1.e-6*nfactorops/bridge->cpus[7],
1.e-6*nfactorops/bridge->cpus[9]) ;

fflush(msgFile) ;
/*--*/
/*

solve the system

*/
mtxX = DenseMtx_new() ;
DenseMtx_init(mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxX) ;
rc = Bridge_solve(bridge, permuteflag, mtxX, mtxY) ;
if (rc == 1) {

fprintf(msgFile, "\n\n solve completed successfully\n") ;
} else {

fprintf(msgFile, "\n" " return code from solve = %d\n", rc) ;
exit(-1) ;

}
fprintf(msgFile, "\n\n ----- SOLVE -----\n") ;
fprintf(msgFile,

"\n CPU %8.3f : time to permute rhs into new ordering"
"\n CPU %8.3f : time to solve linear system"
"\n CPU %8.3f : time to permute solution into old ordering"
"\n CPU %8.3f : total solve time\n",
bridge->cpus[10], bridge->cpus[11],
bridge->cpus[12], bridge->cpus[13]) ;

fprintf(msgFile, "\n\n solve: raw mflops %8.3f, overall mflops %8.3f",
1.e-6*nsolveops/bridge->cpus[11],
1.e-6*nsolveops/bridge->cpus[13]) ;

fflush(msgFile) ;
if (msglvl > 2) {

fprintf(msgFile, "\n\n solution matrix in original ordering") ;
DenseMtx_writeForHumanEye(mtxX, msgFile) ;
fflush(msgFile) ;

}
/*--*/
if (strcmp(solFileName, "none") != 0) {
/*

SPOOLES 2.2 Wrapper Objects : January 2, 1999 42

write the solution matrix to a file

*/
rc = DenseMtx_writeToFile(mtxX, solFileName) ;
if (rc != 1) {

fprintf(msgFile,
"\n fatal error writing mtxX to file %s, rc = %d",
solFileName, rc) ;

fflush(msgFile) ;
exit(-1) ;

}
}
/*--*/
/*

free the working data

*/
InpMtx_free(mtxA) ;
DenseMtx_free(mtxX) ;
DenseMtx_free(mtxY) ;
Bridge_free(bridge) ;

/*--*/

return(1) ; }

/*--*/

Appendix B

testWrapperMT.c — A Multithreaded
Driver Program

/* testWrapperMT.c */

#include "../BridgeMT.h"

/*--*/
int
main (int argc, char *argv[]) {
/*

purpose -- main driver program to solve a linear system

where the matrix and rhs are read in from files and
the solution is written to a file.
NOTE: multithreaded version

created -- 98sep24, cca

*/
BridgeMT *bridge ;
char *mtxFileName, *rhsFileName, *solFileName ;
double nfactorops ;
FILE *msgFile ;
InpMtx *mtxA ;
int error, msglvl, neqns, nfent, nfind, nfront, nrhs, nrow,

nsolveops, nthread, permuteflag, rc, seed, symmetryflag,
type ;

DenseMtx *mtxX, *mtxY ;
/*--*/
/*

get input parameters

*/
if (argc != 11) {

43

SPOOLES 2.2 Wrapper Objects : January 2, 1999 44

fprintf(stdout,
"\n\n usage : %s msglvl msgFile neqns type symmetryflag "
"\n mtxFile rhsFile solFile seed nthread\n"
"\n msglvl -- message level"
"\n 0 -- no output"
"\n 1 -- timings and statistics"
"\n 2 and greater -- lots of output"
"\n msgFile -- message file"
"\n neqns -- # of equations"
"\n type -- type of entries"
"\n 1 -- real"
"\n 2 -- complex"
"\n symmetryflag -- symmetry flag"
"\n 0 -- symmetric"
"\n 1 -- hermitian"
"\n 2 -- nonsymmetric"
"\n neqns -- # of equations"
"\n mtxFile -- input file for A matrix InpMtx object"
"\n must be *.inpmtxf or *.inpmtxb"
"\n rhsFile -- input file for Y DenseMtx object"
"\n must be *.densemtxf or *.densemtxb"
"\n solFile -- output file for X DenseMtx object"
"\n must be none, *.densemtxf or *.densemtxb"
"\n seed -- random number seed"
"\n nthread -- number of threads"
"\n",
argv[0]) ;

return(0) ;
}
msglvl = atoi(argv[1]) ;
if (strcmp(argv[2], "stdout") == 0) {

msgFile = stdout ;
} else if ((msgFile = fopen(argv[2], "w")) == NULL) {

fprintf(stderr, "\n fatal error in %s"
"\n unable to open file %s\n",
argv[0], argv[2]) ;

return(-1) ;
}
neqns = atoi(argv[3]) ;
type = atoi(argv[4]) ;
symmetryflag = atoi(argv[5]) ;
mtxFileName = argv[6] ;
rhsFileName = argv[7] ;
solFileName = argv[8] ;
seed = atoi(argv[9]) ;
nthread = atoi(argv[10]) ;
fprintf(msgFile,

"\n\n %s input :"
"\n msglvl = %d"
"\n msgFile = %s"
"\n neqns = %d"

SPOOLES 2.2 Wrapper Objects : January 2, 1999 45

"\n type = %d"
"\n symmetryflag = %d"
"\n mtxFile = %s"
"\n rhsFile = %s"
"\n solFile = %s"
"\n nthread = %d"
"\n",
argv[0], msglvl, argv[2], neqns, type, symmetryflag,
mtxFileName, rhsFileName, solFileName, nthread) ;

/*--*/
/*

read in the matrix

*/
mtxA = InpMtx_new() ;
rc = InpMtx_readFromFile(mtxA, mtxFileName) ;
if (rc != 1) {

fprintf(msgFile, "\n fatal error reading mtxA from file %s, rc = %d",
mtxFileName, rc) ;

fflush(msgFile) ;
exit(-1) ;

}
if (msglvl > 1) {

fprintf(msgFile, "\n\n InpMtx object ") ;
InpMtx_writeForHumanEye(mtxA, msgFile) ;
fflush(msgFile) ;

}
/*--*/
/*

read in the right hand side matrix

*/
mtxY = DenseMtx_new() ;
rc = DenseMtx_readFromFile(mtxY, rhsFileName) ;
if (rc != 1) {

fprintf(msgFile, "\n fatal error reading mtxY from file %s, rc = %d",
rhsFileName, rc) ;

fflush(msgFile) ;
exit(-1) ;

}
if (msglvl > 1) {

fprintf(msgFile, "\n\n DenseMtx object for right hand side") ;
DenseMtx_writeForHumanEye(mtxY, msgFile) ;
fflush(msgFile) ;

}
DenseMtx_dimensions(mtxY, &nrow, &nrhs) ;
/*--*/
/*

SPOOLES 2.2 Wrapper Objects : January 2, 1999 46

create and setup a BridgeMT object

*/
bridge = BridgeMT_new() ;
BridgeMT_setMatrixParams(bridge, neqns, type, symmetryflag) ;
BridgeMT_setMessageInfo(bridge, msglvl, msgFile) ;
rc = BridgeMT_setup(bridge, mtxA) ;
if (rc != 1) {

fprintf(stderr, "\n error return %d from BridgeMT_setup()", rc) ;
exit(-1) ;

}
fprintf(msgFile, "\n\n ----- SETUP -----\n") ;
fprintf(msgFile,

"\n CPU %8.3f : time to construct Graph"
"\n CPU %8.3f : time to compress Graph"
"\n CPU %8.3f : time to order Graph"
"\n CPU %8.3f : time for symbolic factorization"
"\n CPU %8.3f : total setup time\n",
bridge->cpus[0],
bridge->cpus[1],
bridge->cpus[2],
bridge->cpus[3],
bridge->cpus[4]) ;

rc = BridgeMT_factorStats(bridge, type, symmetryflag, &nfront,
&nfind, &nfent, &nsolveops, &nfactorops) ;

if (rc != 1) {
fprintf(stderr,

"\n error return %d from BridgeMT_factorStats()", rc) ;
exit(-1) ;

}
fprintf(msgFile,

"\n\n factor matrix statistics"
"\n %d fronts, %d indices, %d entries"
"\n %d solve operations, %12.4e factor operations",
nfront, nfind, nfent, nsolveops, nfactorops) ;

fflush(msgFile) ;
/*--*/
/*

setup the parallel factorization

*/
rc = BridgeMT_factorSetup(bridge, nthread, 0, 0.0) ;
fprintf(msgFile, "\n\n ----- PARALLEL FACTOR SETUP -----\n") ;
fprintf(msgFile,

"\n CPU %8.3f : time to setup parallel factorization",
bridge->cpus[5]) ;

if (msglvl > 0) {
fprintf(msgFile, "\n total factor operations = %.0f",

DV_sum(bridge->cumopsDV)) ;
fprintf(msgFile,

SPOOLES 2.2 Wrapper Objects : January 2, 1999 47

"\n upper bound on speedup due to load balance = %.2f",
DV_sum(bridge->cumopsDV)/DV_max(bridge->cumopsDV)) ;

fprintf(msgFile, "\n operations distributions over threads") ;
DV_writeForHumanEye(bridge->cumopsDV, msgFile) ;
fflush(msgFile) ;

}
/*--*/
/*

factor the matrix

*/
permuteflag = 1 ;
rc = BridgeMT_factor(bridge, mtxA, permuteflag, &error) ;
if (rc == 1) {

fprintf(msgFile, "\n\n factorization completed successfully\n") ;
} else {

fprintf(msgFile,
"\n return code from factorization = %d\n"
"\n error code = %d\n",
rc, error) ;

exit(-1) ;
}
fprintf(msgFile, "\n\n ----- FACTORIZATION -----\n") ;
fprintf(msgFile,

"\n CPU %8.3f : time to permute original matrix"
"\n CPU %8.3f : time to initialize factor matrix"
"\n CPU %8.3f : time to compute factorization"
"\n CPU %8.3f : time to post-process factorization"
"\n CPU %8.3f : total factorization time\n",
bridge->cpus[6],
bridge->cpus[7],
bridge->cpus[8],
bridge->cpus[9],
bridge->cpus[10]) ;

fprintf(msgFile, "\n\n factorization statistics"
"\n %d pivots, %d pivot tests, %d delayed vertices"
"\n %d entries in D, %d entries in L, %d entries in U",
bridge->stats[0], bridge->stats[1], bridge->stats[2],
bridge->stats[3], bridge->stats[4], bridge->stats[5]) ;

fprintf(msgFile,
"\n\n factorization: raw mflops %8.3f, overall mflops %8.3f",
1.e-6*nfactorops/bridge->cpus[8],
1.e-6*nfactorops/bridge->cpus[10]) ;

fflush(msgFile) ;
/*--*/
/*

setup the parallel solve

*/

SPOOLES 2.2 Wrapper Objects : January 2, 1999 48

rc = BridgeMT_solveSetup(bridge) ;
fprintf(msgFile, "\n\n ----- PARALLEL SOLVE SETUP -----\n") ;
fprintf(msgFile,

"\n CPU %8.3f : time to setup parallel solve",
bridge->cpus[11]) ;

/*--*/
/*

solve the system

*/
mtxX = DenseMtx_new() ;
DenseMtx_init(mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxX) ;
rc = BridgeMT_solve(bridge, permuteflag, mtxX, mtxY) ;
if (rc == 1) {

fprintf(msgFile, "\n\n solve complete successfully\n") ;
} else {

fprintf(msgFile, "\n" " return code from solve = %d\n", rc) ;
}
fprintf(msgFile, "\n\n ----- SOLVE -----\n") ;
fprintf(msgFile,

"\n CPU %8.3f : time to permute rhs into new ordering"
"\n CPU %8.3f : time to solve linear system"
"\n CPU %8.3f : time to permute solution into old ordering"
"\n CPU %8.3f : total solve time\n",
bridge->cpus[12], bridge->cpus[13],
bridge->cpus[14], bridge->cpus[15]) ;

fprintf(msgFile,
"\n\n solve: raw mflops %8.3f, overall mflops %8.3f",
1.e-6*nsolveops/bridge->cpus[13],
1.e-6*nsolveops/bridge->cpus[15]) ;

fflush(msgFile) ;
if (msglvl > 0) {

fprintf(msgFile, "\n\n solution matrix in original ordering") ;
DenseMtx_writeForHumanEye(mtxX, msgFile) ;
fflush(msgFile) ;

}
/*--*/
if (strcmp(solFileName, "none") != 0) {
/*

write the solution matrix to a file

*/
rc = DenseMtx_writeToFile(mtxX, solFileName) ;
if (rc != 1) {

fprintf(msgFile,
"\n fatal error writing mtxX to file %s, rc = %d",
solFileName, rc) ;

fflush(msgFile) ;

SPOOLES 2.2 Wrapper Objects : January 2, 1999 49

exit(-1) ;
}

}
/*--*/
/*

free the working data

*/
InpMtx_free(mtxA) ;
DenseMtx_free(mtxX) ;
DenseMtx_free(mtxY) ;
BridgeMT_free(bridge) ;

/*--*/

return(1) ; }

/*--*/

Appendix C

testWrapperMPI.c — A MPI Driver
Program

/* testWrapperMPI.c */

#include "../BridgeMPI.h"

/*--*/
int
main (int argc, char *argv[]) {
/*

purpose -- main driver program to solve a linear system

where the matrix and rhs are read in from files and
the solution is written to a file.
NOTE: MPI version

created -- 98sep25, cca and pjs

*/
BridgeMPI *bridge ;
char *mtxFileName, *rhsFileName, *solFileName ;
double nfactorops ;
FILE *msgFile ;
InpMtx *mtxA ;
int error, msglvl, myid, neqns, nfent, nfind, nfront,

nproc, nrhs, nrow, nsolveops, permuteflag, rc, seed,
symmetryflag, type ;

int tstats[6] ;
DenseMtx *mtxX, *mtxY ;
/*--*/
/*

find out the identity of this process and the number of process

*/

50

SPOOLES 2.2 Wrapper Objects : January 2, 1999 51

MPI_Init(&argc, &argv) ;
MPI_Comm_rank(MPI_COMM_WORLD, &myid) ;
MPI_Comm_size(MPI_COMM_WORLD, &nproc) ;
/*--*/
/*

get input parameters

*/
if (argc != 10) {

fprintf(stdout,
"\n\n usage : %s msglvl msgFile neqns type symmetryflag"
"\n mtxFile rhsFile solFile seed"
"\n msglvl -- message level"
"\n 0 -- no output"
"\n 1 -- timings and statistics"
"\n 2 and greater -- lots of output"
"\n msgFile -- message file"
"\n neqns -- # of equations"
"\n type -- type of entries"
"\n 1 -- real"
"\n 2 -- complex"
"\n symmetryflag -- symmetry flag"
"\n 0 -- symmetric"
"\n 1 -- hermitian"
"\n 2 -- nonsymmetric"
"\n mtxFile -- input file for A matrix InpMtx object"
"\n must be *.inpmtxf or *.inpmtxb"
"\n rhsFile -- input file for Y DenseMtx object"
"\n must be *.densemtxf or *.densemtxb"
"\n solFile -- output file for X DenseMtx object"
"\n must be none, *.densemtxf or *.densemtxb"
"\n seed -- random number seed"
"\n",

argv[0]) ;
return(0) ;

}
msglvl = atoi(argv[1]) ;
if (strcmp(argv[2], "stdout") == 0) {

msgFile = stdout ;
} else {

int length = strlen(argv[2]) + 1 + 4 ;
char *buffer = CVinit(length, ’\0’) ;
sprintf(buffer, "%s.%d", argv[2], myid) ;
if ((msgFile = fopen(buffer, "w")) == NULL) {

fprintf(stderr, "\n fatal error in %s"
"\n unable to open file %s\n",
argv[0], argv[2]) ;

MPI_Finalize() ;
return(0) ;

}

SPOOLES 2.2 Wrapper Objects : January 2, 1999 52

CVfree(buffer) ;
}
neqns = atoi(argv[3]) ;
type = atoi(argv[4]) ;
symmetryflag = atoi(argv[5]) ;
mtxFileName = argv[6] ;
rhsFileName = argv[7] ;
solFileName = argv[8] ;
seed = atoi(argv[9]) ;
fprintf(msgFile,

"\n\n %s input :"
"\n msglvl = %d"
"\n msgFile = %s"
"\n neqns = %d"
"\n type = %d"
"\n symmetryflag = %d"
"\n mtxFile = %s"
"\n rhsFile = %s"
"\n solFile = %s"
"\n",
argv[0], msglvl, argv[2], neqns, type, symmetryflag,
mtxFileName, rhsFileName, solFileName) ;

/*--*/
/*

processor zero reads in the matrix.
if an error is found,
all processors exit cleanly

*/
if (myid != 0) {

mtxA = NULL ;
} else {
/*

--
open the file, read in the matrix and close the file
--

*/
mtxA = InpMtx_new() ;
rc = InpMtx_readFromFile(mtxA, mtxFileName) ;
if (rc != 1) {

fprintf(msgFile,
"\n fatal error reading mtxA from file %s, rc = %d",
mtxFileName, rc) ;

fflush(msgFile) ;
}

}
/*

processor 0 broadcasts the error return to the other processors

SPOOLES 2.2 Wrapper Objects : January 2, 1999 53

*/
MPI_Bcast((void *) &rc, 1, MPI_INT, 0, MPI_COMM_WORLD) ;
if (rc != 1) {

MPI_Finalize() ;
return(-1) ;

}
/*--*/
/*

processor zero reads in the right hand side matrix.
if an error is found, all processors exit cleanly

*/
if (myid != 0) {

mtxY = NULL ;
} else {
/*

read in the right hand side matrix

*/
mtxY = DenseMtx_new() ;
rc = DenseMtx_readFromFile(mtxY, rhsFileName) ;
if (rc != 1) {

fprintf(msgFile,
"\n fatal error reading mtxY from file %s, rc = %d",
rhsFileName, rc) ;

fflush(msgFile) ;
} else {

DenseMtx_dimensions(mtxY, &nrow, &nrhs) ;
}

}
/*

processor 0 broadcasts the error return to the other processors

*/
MPI_Bcast((void *) &rc, 1, MPI_INT, 0, MPI_COMM_WORLD) ;
if (rc != 1) {

MPI_Finalize() ;
return(-1) ;

}
/*--*/
/*

--
create and setup a BridgeMPI object
set the MPI, matrix and message parameters
--

*/
bridge = BridgeMPI_new() ;
BridgeMPI_setMPIparams(bridge, nproc, myid, MPI_COMM_WORLD) ;

SPOOLES 2.2 Wrapper Objects : January 2, 1999 54

BridgeMPI_setMatrixParams(bridge, neqns, type, symmetryflag) ;
BridgeMPI_setMessageInfo(bridge, msglvl, msgFile) ;
/*

setup the problem

*/
rc = BridgeMPI_setup(bridge, mtxA) ;
fprintf(msgFile,

"\n\n ----- SETUP -----\n"
"\n CPU %8.3f : time to construct Graph"
"\n CPU %8.3f : time to compress Graph"
"\n CPU %8.3f : time to order Graph"
"\n CPU %8.3f : time for symbolic factorization"
"\n CPU %8.3f : time to broadcast front tree"
"\n CPU %8.3f : time to broadcast symbolic factorization"
"\n CPU %8.3f : total setup time\n",
bridge->cpus[0], bridge->cpus[1], bridge->cpus[2],
bridge->cpus[3], bridge->cpus[4], bridge->cpus[5],
bridge->cpus[6]) ;

rc = BridgeMPI_factorStats(bridge, type, symmetryflag, &nfront,
&nfind, &nfent, &nsolveops, &nfactorops) ;

if (rc != 1) {
fprintf(stderr,

"\n error return %d from BridgeMPI_factorStats()", rc) ;
MPI_Finalize() ;
exit(-1) ;

}
fprintf(msgFile,

"\n\n factor matrix statistics"
"\n %d fronts, %d indices, %d entries"
"\n %d solve operations, %12.4e factor operations",
nfront, nfind, nfent, nsolveops, nfactorops) ;

fflush(msgFile) ;
/*--*/
/*

setup the parallel factorization

*/
rc = BridgeMPI_factorSetup(bridge, 0, 0.0) ;
if (rc != 1) {

fprintf(stderr,
"\n error return %d from BridgeMPI_factorSetup()", rc) ;

MPI_Finalize() ;
exit(-1) ;

}
fprintf(msgFile, "\n\n ----- PARALLEL FACTOR SETUP -----\n") ;
fprintf(msgFile,

"\n CPU %8.3f : time to setup parallel factorization",
bridge->cpus[7]) ;

SPOOLES 2.2 Wrapper Objects : January 2, 1999 55

if (msglvl > 0) {
fprintf(msgFile, "\n total factor operations = %.0f"

"\n upper bound on speedup due to load balance = %.2f",
DV_sum(bridge->cumopsDV),
DV_sum(bridge->cumopsDV)/DV_max(bridge->cumopsDV)) ;

fprintf(msgFile, "\n operations distributions over processors") ;
DV_writeForHumanEye(bridge->cumopsDV, msgFile) ;
fflush(msgFile) ;

}
/*--*/
/*

--
set the factorization parameters and factor the matrix
--

*/
permuteflag = 1 ;
rc = BridgeMPI_factor(bridge, mtxA, permuteflag, &error) ;
fprintf(msgFile, "\n\n ----- FACTORIZATION -----\n") ;
if (rc == 1) {

fprintf(msgFile, "\n\n factorization completed successfully\n") ;
} else {

fprintf(msgFile, "\n"
"\n return code from factorization = %d\n"
"\n error code = %d\n",
rc, error) ;

MPI_Finalize() ;
exit(-1) ;

}
fprintf(msgFile,

"\n CPU %8.3f : time to permute original matrix"
"\n CPU %8.3f : time to distribute original matrix"
"\n CPU %8.3f : time to initialize factor matrix"
"\n CPU %8.3f : time to compute factorization"
"\n CPU %8.3f : time to post-process factorization"
"\n CPU %8.3f : total factorization time\n",
bridge->cpus[8], bridge->cpus[9], bridge->cpus[10],
bridge->cpus[11], bridge->cpus[12], bridge->cpus[13]) ;

IVzero(6, tstats) ;
MPI_Reduce((void *) bridge->stats, (void *) tstats, 6, MPI_INT,

MPI_SUM, 0, bridge->comm) ;
fprintf(msgFile,

"\n\n factorization statistics"
"\n %d pivots, %d pivot tests, %d delayed vertices"
"\n %d entries in D, %d entries in L, %d entries in U",
tstats[0], tstats[1], tstats[2],
tstats[3], tstats[4], tstats[5]) ;

fprintf(msgFile,
"\n\n factorization: raw mflops %8.3f, overall mflops %8.3f",
1.e-6*nfactorops/bridge->cpus[11],
1.e-6*nfactorops/bridge->cpus[13]) ;

fflush(msgFile) ;

SPOOLES 2.2 Wrapper Objects : January 2, 1999 56

/*--*/
/*

setup the parallel solve

*/
rc = BridgeMPI_solveSetup(bridge) ;
fprintf(msgFile, "\n\n ----- PARALLEL SOLVE SETUP -----\n"

"\n CPU %8.3f : time to setup parallel solve",
bridge->cpus[14]) ;

if (rc != 1) {
fprintf(stderr,

"\n error return %d from BridgeMPI_solveSetup()", rc) ;
MPI_Finalize() ;
exit(-1) ;

}
/*--*/
/*

processor 0 initializes a DenseMtx object
to hold the global solution matrix

*/
if (myid == 0) {

mtxX = DenseMtx_new() ;
DenseMtx_init(mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxX) ;

} else {
mtxX = NULL ;

}
/*

the processors solve the system cooperatively

*/
permuteflag = 1 ;
rc = BridgeMPI_solve(bridge, permuteflag, mtxX, mtxY) ;
if (rc == 1) {

fprintf(msgFile, "\n\n solve complete successfully\n") ;
} else {

fprintf(msgFile, "\n" " return code from solve = %d\n", rc) ;
}
fprintf(msgFile, "\n\n ----- SOLVE -----\n"

"\n CPU %8.3f : time to permute rhs into new ordering"
"\n CPU %8.3f : time to distribute rhs "
"\n CPU %8.3f : time to initialize solution matrix "
"\n CPU %8.3f : time to solve linear system"
"\n CPU %8.3f : time to gather solution "
"\n CPU %8.3f : time to permute solution into old ordering"
"\n CPU %8.3f : total solve time"
"\n\n solve: raw mflops %8.3f, overall mflops %8.3f",

SPOOLES 2.2 Wrapper Objects : January 2, 1999 57

bridge->cpus[15], bridge->cpus[16], bridge->cpus[17],
bridge->cpus[18], bridge->cpus[19], bridge->cpus[20],
bridge->cpus[21],
1.e-6*nsolveops/bridge->cpus[18],
1.e-6*nsolveops/bridge->cpus[21]) ;

fflush(msgFile) ;
if (myid == 0) {

if (msglvl > 0) {
fprintf(msgFile, "\n\n solution matrix in original ordering") ;
DenseMtx_writeForHumanEye(mtxX, msgFile) ;
fflush(msgFile) ;

}
}
/*--*/
/*

free the working data

*/
if (myid == 0) {

InpMtx_free(mtxA) ;
DenseMtx_free(mtxX) ;
DenseMtx_free(mtxY) ;

}
BridgeMPI_free(bridge) ;

/*--*/

MPI_Finalize() ;

return(1) ; }

/*--*/

Index

Bridge clearData(), 15
Bridge factor(), 17
Bridge factorStats(), 17
Bridge free(), 15
Bridge frontETree(), 16
Bridge frontmtx(), 16
Bridge mtxmanager(), 16
Bridge new(), 15
Bridge newToOldIV(), 15
Bridge oldToNewIV(), 15
Bridge setDefaultFields(), 15
Bridge setFactorParams(), 16
Bridge setMatrixParams(), 16
Bridge setMessagesInfo(), 16
Bridge setOrderingParams(), 16
Bridge setup(), 17
Bridge solve(), 17
Bridge symbfacIVL(), 16
BridgeMPI clearData(), 32
BridgeMPI factor(), 36
BridgeMPI factorSetup(), 35
BridgeMPI factorStats(), 35
BridgeMPI free(), 32
BridgeMPI frontETree(), 33
BridgeMPI frontmtx(), 33
BridgeMPI lookahead(), 34
BridgeMPI mtxmanager(), 33
BridgeMPI myid(), 34
BridgeMPI new(), 32
BridgeMPI newToOldIV(), 33
BridgeMPI nproc(), 34
BridgeMPI oldToNewIV(), 33
BridgeMPI ownedColumns(), 33
BridgeMPI ownersIV(), 33
BridgeMPI rowmapIV(), 33
BridgeMPI setDefaultFields(), 32
BridgeMPI setFactorParams(), 35
BridgeMPI setMatrixParams(), 34
BridgeMPI setMessagesInfo(), 35
BridgeMPI setMPIparams(), 34
BridgeMPI setOrderingParams(), 34
BridgeMPI setup(), 35

BridgeMPI solve(), 36
BridgeMPI solvemap(), 33
BridgeMPI solveSetup(), 36
BridgeMPI symbfacIVL(), 33
BridgeMPI vtxmapIV(), 33
BridgeMPI Xloc(), 34
BridgeMPI Yloc(), 34
BridgeMT clearData(), 23
BridgeMT factor(), 26
BridgeMT factorSetup(), 25
BridgeMT factorStats(), 25
BridgeMT free(), 23
BridgeMT frontETree(), 23
BridgeMT frontmtx(), 24
BridgeMT lookahead(), 24
BridgeMT mtxmanager(), 24
BridgeMT new(), 23
BridgeMT newToOldIV(), 23
BridgeMT nthread(), 24
BridgeMT oldToNewIV(), 23
BridgeMT ownersIV(), 24
BridgeMT setDefaultFields(), 23
BridgeMT setFactorParams(), 24
BridgeMT setMatrixParams(), 24
BridgeMT setMessagesInfo(), 25
BridgeMT setOrderingParams(), 24
BridgeMT setup(), 25
BridgeMT solve(), 26
BridgeMT solvemap(), 24
BridgeMT solveSetup(), 26
BridgeMT symbfacIVL(), 23

58

